


1/2 009 UNCLASSIFIED

PROCESSING DATE--13NOV70

TITLE-FAMILIAL FORMS OF SCOLIOSIS -U-

AUTHOR-(04)-ABALMASOVA, YE.A., KOGAN, A.V., NIKITINA, M.P., KHADZHAYEV,

COUNTRY OF INFO-USSR

SOURCE--ORTOPEDIYA, TRAVMATOLOGIYA I PROTEZIROVANIYE, 1970, NR 4, PP 22-26

DATE PUBLISHED----70

SUBJECT AREAS-BIGLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-MUSCULOSKELETAL DISEASE, HEREDITARY DISEASE, HUMAN GENETICS

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNGLASSIFIED PROXY REEL/FRAME--1990/1362

STEP NO-UR/9115/70/000/004/0022/0026

CIRC ACCESSIGN NO--APO109443
UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

PROCESSING DATE--13NOV70 UNCLASSIFIED 009 2/2 CIRC ACCESSION NO-APO109443 ABSTRACT/EXTRACT- (U) GP-0- ABSTRACT. THIS ANALYSIS INCLUDES 132 FAMILIES, IN 94 FAMILIES (200 SUBJECTS) SCOLIOSIS HAS OBSERVED IN 2 AND MORE EERSONS, IN 39 FAMILIES THE RELATIVES OF SCOLIOTIC PATIENTS SUFFERED FROM ENURESIS, 35 SCOILOTIC PATIENTS ALSO HAD ENURESIS. PATIENTS WITH SCOLIOSIS WERE DIVIDED INTO 3 GROUPS: SCOLIOSIS IN HOMO AND HETEROZYGOUS TWINS, SCOLIOSIS IN PARENTS AND CHILDREN, SCOLIOSIS IN TWO CHILDREN FROM ONE FAMILY. OF 8 PAIRS OF TWINS, T PAIRS WERE HOMOZYGOUS. AMENG 8 PAIRS, THERE WERE 6 PAIRS OF SISTERS, BROTHER AND SISTER IN ONE PAIR, AND BROTHERS IN ANOTHER. SCOLIOSIS IN THINS WAS ALWAYS CONCORDANT, BUT IN ONE OF THEM ALWAYS MORE SEVERS THAN IN THE OTHER. BY THE CHARACTER AND SEVERITY, SCOLIOSIS IN THE DAUGHTER WAS IDENTICAL TO THAT OF THE MOTHER, WHILE IN THE SON IT WAS ALWAYS LESS HARKED. SCOLIGSIS IN THE SON BY THE CHARACTER AND SEVERITY WAS IDENTICAL TO THAT OF THE FATHER, WHILE IN THE DAUGHTER IT WAS ALWAYS MORE SEVERE. SCOLIOSIS OF VARIOUS SEVERITY WAS A RULE IN THE GROUP WHERE IT WAS PRESENT IN THO CHILDREN OF THE SAME FAMILY. AMONG ALL SCOLIOSIS, THE SCOLIOSES IN PARENTS AND CHILDREN CONSTITUTED THE LARGEST GROUP AND, MOREOVER, THE INCIDENCE OF SCOLIOSIS IN THE MOTHER AND CHILDREN WAS 3 TIMES HIGHER THAN IN THE FATHER AND CHILDREN. IN ALL GROUPS SCOLIOSIS WAS MURE FREQUENTLY OBSERVED IN THE FEMALES, BUT IN THE GROUP WITH SCOLIOSIS IN THE HOTHER AND CHILDREN. THE PREVALENCE OF FEMALES WAS ESPECIALLY MARKED. THE AUTHORS BELIEVE HYCLODY SPLASIA AND THE DYSRAPHIC STATUS TO BE THE MOST FREQUENT CAUSE OF SCOLIOSIS FACILITY: TSENTRAL NOGO INSTITUTA YRAYMATOLOGII I DEVELOPMENT . ORTOPEDII. \_\_\_UNCLASSIFIED\_

บริรณ

UDC: 621.396

# KHADZHI, B. A.

"Measurement of the Time of Arrival of a Sinusoidal Radio Signal Which is Received in the Presence of Noise and Pulse Interference"

Moscow, Radiotekhnika, Vol 26, No 9, Sep 71, pp 31-35

Abstract: The author considers a radio signal in which the fronts of the envelope have a predetermined (exponential) shape. It is assumed that the systematic measurement error due to the finite rise time of the envelope front is known, and only the random errors due to interference are considered. In the most important practical case of relatively low noise, most of the results are derived in analytical form. It is assumed that the input voltage x(t) is the sum of signal s(t) and interference n(t):  $x(t) = s(t) + n(t) = Aa(t-\tau)\sin(\omega_0 t + \phi) + n(t),$ 

where A,  $\phi$  and  $\tau$  are the random amplitude, phase of the carrier and time of arrival of the signal respectively; a(t) is the envelope, which takes the form

$$a(t) = \begin{cases} 1 - e^{-t/T_{\Phi}} & \text{when } 0 < t \leq T, \\ e^{-t/T_{\Phi}} \left( e^{T/T_{\Phi}} - 1 \right) & \text{when } t > T. \end{cases}$$

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

USSR

KHADZHI, B. A., Radiotekhnika, Vol 26, No 9, Sep 71, pp 31-35

It is assumed that the carrier frequency  $\omega_0$ , signal duration T and duration  $T_{\varphi}$  of the envelope front are known. A model is considered where the interference pulses are short (compared with  $T_{\varphi}$ ) segments of white noise with spectral density  $M_0$ . It is shown in particular that when the spectral density of the noise on the carrier frequency  $N_0$  is much less than the spectral density of the white noise, the variance of the estimate of  $\tau$  is

$$\overline{(\Delta\tau)^2} = \frac{N_0 T_{\phi}}{A^2} (1+\delta),$$

where  $\delta < 1$  is the relative time taken up by the interference pulses. Sub-optimum measurement of the time of arrival of a radio signal in the absence of pulse interference is considered. It is found that when pulse interference is present,

 $N_0 + \delta M_0 = N_0 \left( 1 + \delta \frac{M_0}{N_0} \right).$ 

Thus in the suboptimum method of measuring the time of arrival of the signal, the effect of pulse interference is  $M_0/N_0$  times as great as in the optimum method of measurement. One figure, one table, bibliography of four titles.

2/2

1/2 023

UNCLASSIFIED

PROCESSING DATE--020CT70

TITLE-MEASURING THE PHASE OF SUPERLONG WAVE SIGNALS DURING THE SOLAR SECUIPSE OF 22 SEPTEMBER 1968, MEASUREMENT OF PHASE OF SUPERLONG WAVE AUTHOR-(02)-PROTOPODY, L.A., KHADZHI, V.A.

COUNTRY OF INFO--USSR

K

SOURCE--INSTITUTE OF RADIO ENGINEERING AND ELECTRONICS ACADEMY OF SCIENCES USSR: MOSCOW, GEOMAGNETIZM I AERONOMIYA, VOL X, NO 2, 1970, PP 363-364 DATE PUBLISHED----70

SUBJECT AREAS-NAVIGATION, ASTRONOMY, ASTROPHYSICS

TOPIC TAGS--SULAR ECLIPSE, SIGNAL FREQUENCY, PHASE ANALYSIS

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/1668

STEP NO--UR/0203/70/010/002/0363/0364

CIRC ACCESSION NO--APO109659

UNCLASSIFIED

2/2 023 UNCLASSIFIED PROCESSING DATE--020CT70
CIRC ACCESSION NO--APO109659

ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. ON 22 SEPTEMBER 1968 THE AUTHORS MEASURED THE PHASES OF SIGNALS OF THE SUPERLONG WAVE RADIO STATIONS GBR (16 KG-SEG) AND RYES (100 KC-SEC) FOR A PERIOD OF SIX HOURS COVERING THE THE MEASUREMENTS WERE MADE FROM VISUAL DURATION OF THE SOLAR ECLIPSE. 1030 TO 1700 HOURS ON 22 SEPTEMBER AND FROM 0830 TO 1700 HOURS ON 26 SEPTEMBER. THE CURVE FOR 22 SEPTEMBER AND FROM THE END OF THE NIGHT TO DAY TRANSITION. THE SOLAR ECLIPSE EFFECT WAS MANIFESTED DURING THE PERIOD 1300-1600 HOURS AND CONSISTED OF AN INCREASE IN PHASE. MAXIMUM PHASE DRIFT WAS PLUSSOPLUSIDEGREES BY 1430 HOURS ON 22 THE MAXIMUM RELATIVE CHANGE IN THE FREQUENCY OF THE SIGNAL RECEIVED FROM GBR CAUSED BY THE SOLAR ECLIPSE WAS 2 TIMES 10 NEGATIVE 9 IN ABSOLUTE VALUE. THIS SAME ORDER OF MAGNITUDE OF FREQUENCY CHANGE WAS CAUSED BY TRANSITION FROM DAY TO NIGHT. IN THE SIGNAL PHASE FOR STATION RYES THERE IS SOME INCREASE IN IRREGULAR PHASE VARIATIONS DURING THE TIME OF THE SOLAR ECLIPSE. THERE WERE NO SIGNIFICANT REGULAR DEVIATIONS FROM THE MORMAL PHASE VARIATION FOR REYS ON 26 SEPTEMBER. THIS CAN EVIDENTLY BE ATTRIBUTED TO THE FACT OF A CONSIDERABLY LESSER EXTENT OF THE PROPAGATION PATH FOR THIS SIGNAL THAN FOR GBR SIGNAL AND A DIFFERENT ORIENTATION OF THIS PATH RELATIVE TO THE EAST WEST LINE.

UNCLASSIFIED

USSR

UDC [537.226 + 537.311.33] : [537 + 535]

SAGENIUS AT LEGISTATI DESCRIPTION DE LEGISTATION DE

KOLODIYEVA, S. V., FOTCHENKOV, A. A., KHADZHI, V. Ye.

"Anomalous Dielectrical Dispersion in Synthetic Quartz Monocrystals"

Khar'kov, V sb. Monokristally i tekhnika (Monocrystals and Engineering -- collection of works) No 4, 1971, pp 149-155 (from RZh-Fizika, No 11, 1971, Abstract No 11E881)

Translation: It is shown experimentally that the relexation processes in monocrystals of synthetic quartz cannot be considered as purely Debye processes. The observable anomalies of the dielectric dispersion are considered from the position of the interaction of the electrically active impurity defects of the Al/R type of P centers (R-Li, Na, K) with the electrically inactive complexes of the nonstructured phase, the extent of which is determined in the crystal by its growth conditions.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1

| • | KHA | DZHI | MATOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , G.M.                                                                                                                                                                                                                      |         | Magne                      | +,0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |      | the countries of the co  | USM resident Ender En | g•<br>₩ | 70 730BL                   | MACHINE DAYA TAPAS 59624  MEASUREMENT OF DEMACRITIZING FIZLDS IN CYLINDRICAL MICHEL FILMS  AMERICAN ACTUAL  Cold, Microbihandous, G.H. Khadahimatova  Cold, Tubi Lationa Rasarch Sarvica  First Cold Research Sarvica  Arifingiom, Virginia 22201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |     |      | way Class (\$hoo 31 ho of Dayer cont (the 32 has been been continued to the |                                                                                                                                                                                                                             |         | It type at Review a Prival | CARD.  3. Francisco Value 1973  26. July 1973  27. July 1973  18. Francisco Value 15.0 V |

USSR UDC: 537.534.8

ARIFOV, U. A., KHADZHIMIKHAMFDOV, Kh. Kh., YUNUSOV, A. I., Institute of Electronics, Academy of Sciences of the Uzbek SSR, Tashkent "Order of the Red Banner of Labor" State University imeni V. I. Lenin

"Channeling of Light Ions in Tungsten, Molybdenum, and Copper Single Crystals"

Tashkent, IAN Uzbekskoy SSR, Seriya Fiziko-Matematicheskikh Nauk, No 3, 1971, pp 60-63

Abstract: The paper presents the results of an investigation of the scattering factor of ions as a function of type, ion energy, and diameter; the mass of the target atoms and crystal lattice parameters in the case of the friable face (112) of single crystals of tungsten, molybdenum, copper, and silicon. Currents were measured by the method of double modulation at 300°K. Lithium, sodium, potassium, rubidium, and cesium atoms were studied. The values found for the ratio of the greatest diameter of the channeled ion to the width of the channel of the crystal face were found to be 0.77 for sodium bombardment of copper, 0.78 for lithium bombardment of tungsten, and 0.79 for lithium bombardment of molybdenum. The corre-

1/2

USSR

ARIFOV, U. A. et al., IAN UzSSR, Ser. Fiz.-Mat. Nauk, No 3, 1971, pp 60-63

sponding figure for lithium cations and copper is 0.53, which means that the scattering factor for copper is somewhat lower than for silicon in spite of the larger mass of copper atoms. An anomaly in the curve for the scattering factor as a function of the ion mass is observed which depends on the geometry of the crystal lattice of the target. Scattering of heavy ions by light targets is attributed to multiple collisions between the ion and the surface atoms. A complete interpretation of the results would require calculations which account for the increasing transparence of the crystal face as the energy increases. In particular, single collisions predominate at energies greater than 1 keV, while multiple paired collisions are the rule at lower energies. Three figures, bibliography of nine titles.

2/2

. 72 -

स्था (क्षेत्रपुर्व क्षेत्रपुरव ) हो । क्षेत्रपुरव (विद्या ) हो । हा हुन स्थान स्थान स्थान स्थान हो । स्थान स्थ स्थान

USSR UDC: 537.534.8

ARIFOV, U. A., KHADZHIMUKHAME ", Kh. Kh., YUNUSOV, A. I., Institute of Electronics, Academy of Sciences of the Uzbek SSR, Tashkent "Order of the Red Banner of Labor" State University imeni V. I. Lenin

"Scattering of Alkali Ions by the Surface of NbTi and SiC Targets"

Tashkent, IAN UzSSR, Seriya Fiziko-Matematicheskikh Nauk, No 4, 1971, pp 55-57

Abstract: The authors investigate scattering of alkali ions by the surface of NbTi alloy, the binary compound  $\alpha$ -SiC, and their components in the bombardment ion energy region  $E_0=12-30$  keV. The experiments were done in a working vacuum of  $(1-5)\cdot 10^{-7}$  mm Hg. The targets were hardened either by electron bombardment from the back side or by heating the substrate. The ion beam currents were of the order of a microampere. Measurements were taken by the oscillographic method and by the galvanometric method (for small secondary currents). The coefficient of ion scattering by face (0001) of  $\alpha$ -SiC was studied as a function of the type and energy of

1/2

USSR

ARIFOV, U. A. et al., IAN UZSSR, Seriya Fiziko-Tekhnicheskikh Nauk, No 4, 1971, pp 55-57

the primary ions. Scattering by the components of the alloy was found to be lower than for the alloy itself. In the case of NbTi, scattering by niobium alone gave a higher coefficient, and titanium alone gave a lower coefficient of scattering than the alloy. Analysis of the results shows that the value of the scattering coefficient decreases with a reduction in the mass of the atoms in the target and an increase in the mass of the bombarding ions. The experimental data are approximated by the empirical formula

$$K_p = \gamma m_1 \left(\frac{m_2}{E_0}\right)^n,$$

where  $K_D$  is the scattering factor,  $\gamma$  is an empirical constant,  $m_1$  is the mass of the atoms in the target,  $m_2$  is the mass of the bombarding ions, and the exponent n is a function of the atomic number of the ion. Three figures, bibliography of five titles.

- 73 -

UDC 629.78.017.2

USSR

MIKHAYLOV, F. A., TYKHEVICH, O. F., and KHADZHINOV, M. K.

"Calculation of the Characteristics of Different Structural Combinations of Linear Transitional Systems"

Tr. Mosk. Aviats. In-ta (Works of the Moscow Aviation Institute), No 240, 1972, pp 116-122 (from Referativnyy Zhurnal--Raketostroyeniye, No 5, May 73, Abstract No 5.141.143 by the authors)

Abstract: As is known, the transfer function of a linear transitional system is the natural expansion of the concept of the transfer function of a steady system, but in contrast to a steady system a transitional system generally cannot be obtained with the aid of a finite number of operations on the coefficient of dynamics equations. Methods of finding transfer functions of different structural combinations (except parallel), done for steady systems, cannot be used for transitional system. This article was devoted to the problem of finding approximate analytical expressions of transfer functions for different combinations of linear transitional systems. It is assumed that the given and sought for transfer functions can be approximately expressed in the form:

1/2

- 2 -

USSR

UIX 625.78.017.2

MIKHAYLOV, F. A., et al., Tr. Mosk. Aviats. In-ta, No 240, 1972, pp 116-122

$$W_{1}(s,t) = \frac{s_{1,0}(t)s^{q-1} + \dots + c_{1q-1}(t)}{s^{q} + d_{1,1}(t)s^{q-1} + \dots + d_{1q}(t)}$$

where i--index of chain or combination;  $c_{i,j}$ , j=0..., q-1,  $d_{i,j}$ , j=1,..., q--real coefficients, s--complex variable. The problem is reduced to finding formulas which express the coefficients of transfer coefficients of combinations through the coefficients of transfer functions for chains. Since solution of this problem depends on the proposed degree of the polynomial of the transfer function denominator, then it is necessary to assign the indicated dedegree to obtain a single-value solution. The variant of solution is examined for the case when the polynomial degree of the transfer function denominator of a combination is determined via the polynomial degree of transfer function denominators of chains by the same rules which pertain to the theory of steady systems. 1 figure, 1 bibliographic reference.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

USSR

SARYMSAKOV, T. A., Academician of the Chademy of Sciences of the Uzbek SSR, KHADZHIYEV, Dzh., Tashkent State University imeni V. I. Lenin

"Topological Moduli Over Half-Fields of the First Kind"

Moscow, DAN SSSR, vol 200, No 5, Oct 71, pp 1041-1043

Abstract: The work is a continuation of research done by Sarensykov and others in the field of topological half-fields (M. Ya. Antonovskiy et al., "Topological Half-Fields", Tashkent, 1960; M. Ya. Antonovskiy et al., "Works of Tashkent State University, Mathematics," No 208, 1962; A. M. Dektyarev, Ibid). For the sake of simplicity, a Tikhonov half-field is taken as the basic half-field. Most of the results can be extended to the case of an arbitrary half-field of the first kind without changes.

Let  $X_q$  be the modulus over the half-field  $E_q$  and let  $\prod_q X_q \left(\sum_q X_q\right)$  be the direct product (sum) of the moduli  $X_q$  for each  $q \in \Lambda$ . The sum  $\sum_q X_q$  and the product  $\prod_q X_q$  are converted to moduli over the half-field  $E = \prod_q E_q$  if 1/2

USSR

SARYMSAKOV, T. A. et al., DAN SSSR, vol 200, No 5, Oct 71, pp 1041-1043 the operations of addition and multiplication by elements E are introduced by coordinates. In the case where  $X_q$  are topological moduli, moduli  $\prod_q X_q$  and  $\sum_q X_q$  are considered with Tikhonov topology. Thirteen theorems are given. Bibliography of five titles.

2/2

APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R002201310001-1"

4

UDC 577.4:616.988.26(571.13)+576.858

USSR

VOROB YEVA, N. N., KHARITONOVA, N. N., and KHADZHIYEVA, T. M. Biological Institute, Siberian Branch of the Academy of Sciences USSR, Novosibirsk

"Ecological Relationships of the Virus of Omsk Hemorrhagic Fever with Animals in a Natural Focus"

Novosibirsk, Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya Biologicheskikh Nauk, Vol 1, No 5, Apr 70, pp 98-102

Abstract: Circulation of hemorrhagic fever virus among various types of animals — inhabitants of a natural focus — the emergence of ecological links between virus and animals, and elucidation of a possible nontransmitting mechanism for transfer of the infection in the natural focus were the aim of this study. A total of 890 small mammals of 13 species from seven regions in the Novosibirsk area were examined. The blood of 705 small mammals of 13 species and the serum of 1199 domestic animals were tested in the hemagglutination inhibition test with antigen from regional strains of Omsk hemorrhagic fever virus. Brain, blood, urine, and internal organs of the animals were examined. The virus was isolated on chick embryo fibroblasts, with subsequent intracerebral infection of white mice.

1/2

USSR

VOROB'YEVA, N. N., et al, Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya Biologicheskikh Nauk, Vol 1, No 5, Apr 70, pp 98-102

To elucidate the possibilities of a nontransmitting mechanism for transfer of the infection, 56 muskrats were infected with the virus in different ways. Sixteen virus strains were isolated from muskrat brains, which indicates that the disease is of viral etiology also in the Novosibirsk region. Serological evidence established the presence of specific antibodies against hemorrhagic fever virus in the blood of domestic animals and in 10 species of small mammals. Ecological relationships exist between the virus and both wild and domestic animals in natural foci. Tests involving infection of muskrats and water rats with different doses of the virus, administered by the alimentary and inhalation moates, showed that the muskrat is very sensitive to the virus, and that water rats have a low sensitivity. Muskrats may contaminate their environment with the virus by excretion.

2/2

1/2 020 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--PYRROMECAINE ANESTHESIA DURING INSTRUMENTAL DIAGNOSTIC

INVESTIGATIONS IN PATIENTS WITH PULMONARY PATHOLOGY -U-

AUTHOR-(05)-KUZIN, H.I., PRYANISHNIKOVA, N.T., OSIPOVA, N.A., KHADZHYEVA,

COUNTRY OF INFO--USSR

SOURCE-KHIRURGIYA, 1970, NK 6, PP 58-62

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ANESTHETIC, DIAGNOSTIC METHODS, RESPIRATORY SYSTEM DISEASE,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY FICHE NO---FD70/605003/D09 STEP NO---UR/0531/70/000/006/0058/0062

CIRC ACCESSION NO--AP0139541

UNCLASSIFIED

PROCESSING DATE--040EC70 UNCLASSIFIED 2/2 020 CIRC ACCESSION NO--APO139541 ABSTRACT/EXTRACT-- (U) GP-O- ABSTRACT. CLINICAL TRIALS OF PYRROMECAINE, A NEW SOVIET MADE LOCAL ANESTHETIC, EFFECTED IN 102 PATIENTS WITH SURGICAL PULMONARY PATHOLOGY DEMONSTRATED THIS PREPARATION CAPABLE OF PRODUCING AN EFFECTIVE ANESTHESIA OF THE RESPIRATORY TRACT, ENSURING PERFORMANCE OF COMPLICATED DIAGNOSTIC PROCEDURES (BRONCHOGRAPHY, BRONCHOSPIROGRAPHY). AS REGARDS ITS POTENCY AND QUICKNESS OF ANESTHETIC ACTION PYRROMECAINE IS SUPERIOR TO NOVOCAINE AND IS EQUAL TO FACILITY: KAFEDRA FAKUL TETSKOY KHIRURGII I MII I. M. SECHENOVA, INSTITUT FARMAKOLGII, MOSKVA. UNCLASSIFIED ..... 

UNCLASSIFIED PROCESSING DATE--04DEC70

1/3 · 022 UNCLASSIFIED PROCESSING DATE--04DEC70

TITLE--STATE OF PERIPHERAL BLOOD CIRCULATION IN PERSONS BEING FOR A LONG

TIME IN AN OPEN TYPE SUBMARINE LABORATORY, HABITAT -U
AUTHOR-[04]-AKHLAMOV, YE.A., GULYAR, S.O., GERASYUTENKO, YE.I., KHAES,

COUNTRY OF INFO--USSR

SOURCE-FIZIOLOGICHNYY ZHURNAL, AKADEMIYA NAUK UKRAINS'KOI RSR. 1970, YOL 16, NR 1, PP 115-120 DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--BLOOD CIRCULATION, PERIPHERAL CIRCULATION, AQUANAUT, UNDERWATER RESEARCH LABORATORY, ATMOSPHERIC HUMIDITY, ATMOSPHERIC TEMPERATURE/(U) IKHTIANDR UNDERWATER LABORATORY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/1369

STEP NO--UR/0238/70/016/001/0115/0120

CIRC ACCESSION NO--APO136728

UNCLASSIFIED

PROCESSING DATE--040EC70 2/3 022 **UNCLASSIFIED** CIRC ACCESSION NO--APO136728 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. PERIPHERAL BLOOD CIRCULATION OF EIGHT AQUANAUTS WHO SPENT SEVEN DAYS IN AN OPEN TYPE SUBMARINE LABORATORY WAS STUDIED TO DETERMINE THE ADAPTIVE STRESSES OF A PERSON SUBJECTED FOR A PROLONGED TIME TO UNUSUAL CONDITIONS WITHOUT PREVENTIVE PREPARATION FOR SUCH CONDITIONS. THESE AQUANAUTS PARTICIPATED IN IKHTIANDR-67 BLACK SEA EXPEDITION IN AUGUST-SEPTEMBER, 1967. THE LABORATORY, A SPECIALLY DESIGNED FOUR CHAMBER VESSEL HAVING VOLUME OF 28 M PRIMES WITH FORCED VENTILATION, WAS SUBMERGED TO 14 M DEPTH. IT WAS EQUIPPED FOR CONTINUOUS LIVING UNDER WATER. ATMOSPHERIC PRESSURE OF 2,2 ATM, TEMPERATURE OF 23 TO 31 C AND HUMIDITY OF 93PERCENT WERE CONTINUOUSLY MAINTAINED. ONLY HEALTHY INDIVIDUALS, 24 TO 42 YEARS OLD WERE SELECTED FOR INVESTIGATION. TWICE A DAY THEY WALKED FOR 30 MIN AT A DEPTH OF OVER 14 M AND ONCE A DAY PERFORMED PHYSICAL WORK FOR 20 MIN-WATER TEMPERATURE VARIED FROM 20 TO 23 C BUT AQUANAUTS WERE WARMLY DRESSED. PERIPHERAL BLOOD CIRCULATION WAS MEASURED BEFORE SUBMERGING AND ON THE SURFACE AFTER BEING UNDER WATER FOR ONE; TWO, THREE, FOUR, AND FIVE DAYS. IN ADDITION TO BLOOD CIRCULATION AND PULSE, SKIN TEMPERATURE IN THE MOUTH AND AT VARIOUS POINTS OF THE BODY AND LIMBS MEASURING TECHNIQUES AND INSTRUMENTATION ARE DESCRIBED WERE MEASURED. IN DETAIL AND DATA OBTAINED ARE PRESENTED IN TABULAR FORM.

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

PROCESSING DATE--04DEC70 UNCLASSIFIED 022 3/3 CIRC ACCESSION NO--AP0136728 ABSTRACT/EXTRACT--AS A RESULT OF THE DESCRIBED INVESTIGATION THE FOLLOWING PRELIMINARY CONCLUSIONS WERE MADE: FROM AMONG MANY FACTORS AFFECTING A HUMAN BEING SUBJECTED TO PROLONGED STAYING UNDERWATER MOST IMPORTANT FOR BEOOD CIRCULATION ARE HIGH HUMIDITY AND AIR TEMPERATURE, AND CONTINUOUS INHALING OF SUBTOXIC CONCENTRATIONS OF OXYGEN; AFTER BEING IN A SUBMARINE LABORATORY FOR THREE TO FOUR DAYS, AN ADAPTATION OF THE ORGANISM TAKES PLACE; WHEN PERFORMING UNDERWATER WORK IN A LIGHT AQUANAUT SUIT MUCH ATTENTION SHOULD BE FAID TO PROTECTING THE AQUANAUT FROM COLD; AND IN DESIGNING OPEN TYPE UNDERHATER BASE, MEANS SHOULD BE PROVIDED FOR KEEPING AQUANAUTS WARM. FACILITY: KAFEDRA KHVOROB VUKHA, GORLA, NOSA DONETS'KOGO MEDYCHNOGO INSTYTUTU; MEDYCHNYYVIDDIL VNDI GIRNYCHORYATUVAL NOY SPRAVY. UNCLASSIFIED 

UDC: 681.3

KHABIBULLIN, N. F., KHAFIZOV, F. I.

"Reliability of Data on Magnetic Tapes in the 'Minsk-22' Digital Computer"

Tr. N.-i. i proyektn. in-ta po vnedreniyu vychisl. tekhn. v nar. kh-vo (Works of the Scientific Research and Design institute on Introducing Computer Technology Into the National Economy), 1970, vyp. 5, pp 102-107 (from RZh-Matematika, No 11, Nov 71, Abstract No 11V767)

Translation: A mathematical model is proposed for determining the probability of undetected errors on magnetic tape in the "Minsk 22" computer with simultaneous use of two check methods: modulo-2 check and the method of check summation. The probability of error for a data block in general form is equal to  $P = lmkp_0p_1$ , where l is the number of sweeps of a portion of the data block through the tape transport channel during solution of the problem; k is the number of combinations of possible errors;  $p_1$  is the probability of appearance of a 1, and  $p_0$  is the probability of appearance of a probability of appearance of a 2. Whikheyev.

1/1

-69 -

USSR

UDC 65:65.011.56

KHAFIZOV, F. I., Engineer

"A Method of Determining Errors on Magnetic Tape in the Minsk-22 Digital Computer"

Moscow, Mekhanizatsiya i Avtomatizatsiya Proizvodstva, No 7, 1971, pp 44-45

Abstract: The Minsk-22 digital computer uses both built-in and programmed checking to detect errors in data stored on magnetic tape. The probability of the occurrence of undetected errors in k runs of a data file divided into m portions of n words each is given by the formula:

$$P_{\rm H} \approx \text{kmn(n+1)4} \cdot 10^8 p_1^3 p_0^2$$

where  $p_1$  and  $p_0$  are the probabilities of the occurrence of a single incorrect "1" and a single incorrect "0," respectively. The values of  $p_1$  and  $p_0$  are different for different types of magnetic tape and may be determined specifically for each Minsk-22 by experimental and statistical means.

1/1

- 112 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

USSR

UDC: 681.3

KHABIBULLIN, N. F., KHAFIZOV, F. I.

"Reliability of Magnetically Taped Data on the 'Minsk-22' Digital Computer"

Tr. N.-i. i proyektn. in-ta po vnedreniyu vychisl. tekhn. v nar. kh-vo (Works of the Scientific Research and Design Institute on Introducing Computer Technology Into the National Economy), 1970, vyp. 5, pp 102-107 (from RZh-Kibernetika, No 11, Nov 71, Abstract No 11V787)

<u>Translation</u>: A mathematical model is proposed for determining the probability of undetected errors on the magnetic tape in the "Minsk-22" digital computer with simultaneous use of two checking methods: mod-2 check and the addition check method. The probability of error for a data block, in general form, is equal to  $P = Imkp_0p_1$ , where l is the number of sweeps of a portion of the block across the tape transport channel during solution of the problem; k is the number of combinations of possible errors;  $p_1$  is the probability that a one will zhow up;  $p_0$  is the probability that a zero will appear. V. Mikheyev.

1/1

USSR

UDC: 681.3.06:51

KHAFIZOV, F. I.

"Comparison of Three Modifications of the Method of Check Summation of Data"

Tr. N.-i. i proyektn. in-ta po vnedreniyu vychisl. tekhn. v nar. kh-vo (Works of the Scientific Research and Design Institute on Introducing Computer Technology Into the National Economy), 1970, vyp. 5, pp 108-116 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V579)

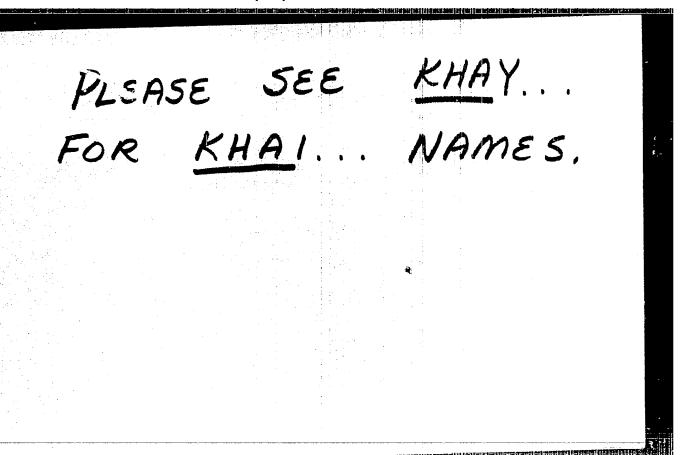
[No abstract]

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1" USSR

UDC 537.226+537.311.33

### KHAGENMYULLER, P.


"Fluroine -- Cornerstone of Mendeleyev's Periodic Table"

V sb. 100 let period. zakona khim. elementov. 1869-1969 (Centenary of Periodic Law of Chemical Elements, 1869-1969 -- Collection of Works), Moscow, "Nauka" (Science), 1971, pp 75-84 (from RZh-Fizika, No 1, Jan 72, Abstract No 1YE1000)

Translation: Light is cast on fluorine's special role as the most electronegative of the elements in the periodic system. Detailed consideration is given to the crystalline structure of solid fluorine compounds falling under the types of tungsten bronzes, garnets, substituted oxides, and rutile, as well as structures like silicates and aluminosilicates, etc. Changes in the magnetic properties of crystals are investigated in connection with the determined structure and composition (phases of variable composition, solid solutions). Bibliography with 16 titles.

1/1

- 55 -



APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

UNCLASSIFIED PROCESSING DATE--11SEP70

TITLE-DEFECTS IN SEMICONTINUOUSLY CAST PIPE -U-

AUTHOR--KRIVOSHEYEV, A.YE., DZIMIN, YU.S., KHAKHALIN, B.D., DAVYDOV, V.A.

COUNTRY OF INFO--USSR

SOURCE--LITEINDE PROIZVOD. 1970, (1) 7-9

DATE PUBLISHED----70



SUBJECT AREAS--MECH., IND., CIVIL AND MARINE ENGR, MATERIALS
TOPIC TAGS--METAL CRACKING, METAL CASTING, CONTINUOUS CASTING, METAL PIPE

CONTROL MARKING--NO PESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/1319

STEP NO--UR/0128/70/000/001/0007/0009

CIRC ACCESSION NO--APO106096

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

PROCESSING DATE--11SEP70 UNCLASSIFIED 2,42 015 CIRC ACCESSION NO--APO106096 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. WITH THE PURPOSE TO ELUCIDATE THE CRACK FORMATION IN TITLE CASTING THE STUDY WAS CARRIED OUT ON THE TEMP. FIELD ACROSS THE SECTION OF THE TITLE PIPE DURING ITS SOLIDIFICATION. THE TEMP. OF CAST IRON (C 3.5-3.7, SI 2.0-2.3, MN 0.6-0.8, P 0.2-0.3, AND S SMALLER THAN OR EQUAL TO 0.1 WT. PERCENT) BEFORE CASTING WAS 1280-1300DEGREES. AND THE WITHDRAWAL RATE WAS 1.0-1.1 AND 0.7-0.8 M-MIN. DIAM. DE PIPES WAS 500 AND 700 MM. THREE ZONES OF SOLIDIFICATION WERE DISTINGUISHED: (1) PERIOD OF EXPANSION PRIOR TO SHRINKAGE, (PESI, (ZONE OF TIGHT CONTACT OF THE CASTING ALONG 40PERCENT OF MOLD HEIGHT), (2) PERIOD OF FOUNDING PREPEARLITE SHRINKAGE (ZONE OF THE GAP BETWEEN THE CASTING AND MOLD (PFPS), AND (3) FINISHING PERIOD OF FULL SHRINKAGE, (FPCS) (ZONE OF COOLING OUTSIDE OF THE MOLD). EXPERIENCE AT FOUNDRIES HAS SHOWN THAT CAST IRONS WITH HIGH VALUES FOR PES AND LOW VALUES FOR PEPS HAVE PRACTICALLY NO CRACK FORMATION. BEST RESULTS WERE PRODUCED WITH EUTECTOIDAL AND TRANSEUTECTOIDAL CAST IRON IN PARTICULAR (C 3.7-3.8. AND ST 2.2-2.3 WT. PERCENT). ONE OF THE CAUSES OF CRACK FORMATION IS THE FORMATION OF A TOO THIN PRIMARY CRUST ON CRYSTO. METAL WITH NONUNIFORM FORMATION OF A GAP BETWEEN THE PIPE SURFACE AND THE HOLD. THE SUPERHEATING OF THE CAST IRON MAY HAVE COUNTERACTING EFFECTS BOTH FAVORING AND INHIBITING THE CRACK FORMATION.

UNCLASSIFIED ....

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

USSR

UDC 621.396.622

ZLENTSOV, A. V., KHAKHALKIN, V. N., SHEVTSOV, E. A.

"Selection of Optimum Coupling With the Resonator in a Photoparametric Converter"

Tr. Mosk. elektrotekhn. in-ta svyazi (Works of the Moscow Institute of Electrical Communications Engineering), 1970, vyp., pp 10-15 (from RZh-Radiotekhnika, do 10, Oct 70, Abstract No 10D306)

Translation: The authors consider the circuit of a photoparametric converter based on a photodiode located in a resonator which is one of the loads of a balanced wave-guide bridge. The optimum coupling of the waveguide resonator with an arm of the waveguide bridge is calculated. The curve for the change in detector power as a waveguide bridge is calculated. The curve for the change in detector power as a function of the amount of coupling has a maximum close to critical coupling. It is function of the amount of coupling coefficients be selected somewhat greater than 1 on recommended that the coupling coefficients be selected somewhat greater than 1 on the basis of the signal-to-noise ratio. The signal-to-noise level is determined by the converted frequency fluctuations of the klystron oscillator. The maximum signal-to-noise ratio is observed at a rather small imbalance of the bridge. A. K.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

PROCESSING DATE--020CT70 UNCLASSIFIED TITLE--CHANGES IN THE ULTRASTRUCTURE OF NEURONS OF THE UPPER CERVICAL SYMPATHETICAL GANGLION IN CATS WITH THE INTRODUCTION OF THE BLOOD SERUM AUTHOR-(03)-SOLOVYEVA, ZH.V., KHAKHANOVA. N.L., LIDEMAN, R.R. COUNTRY OF INFO-USSR SOURCE-ZHURNAL NEVROPATOLOGII I PSIKHTATRII IMENI S. S. KORSAKOVA, 1970, VOL 70. NR 4. PP 584-592 DATE PUBLISHED ------ 70 SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS--NEURON, GANGLION, CAT, BLOOD SERUM, SCHIZOPHRENTA, MITOCHONDRION CLOTECL MASKING-NO RESTRICTIONS PRUXY REEL/FRAME -- 1988/1543. STEP: NO--UR/0246/70/070/004/0584/059? DOCUMENT CLASS--UNCLASSIFIED CIRC ACCESSION NO--APC106290 UNCLASSIFIED 

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

UNCLASSIFIED

PROCESSING DATE--020CT79

areetaraneet turinggerage a aregamen is ebb

2/2 CIRC ACCESSION NO--AP0106290 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE AUTHORS STUDIED THE ACTION POTENTIALS IN THE SUPERIOR CERVICAL SYMPATHETIC GANGLION AND ITS ULTRASTRUCTURE IN CATS IN INTRA ARTERIAL INTRODUCTION OF THE BLOOD SERUM OF NORMALS, OF PATIENTS WITH SHIFT LIKE SCHIZOPHRENIA AND NUCLEAR SCHIZOPHRENIA. THE SERUM OF NORMALS SOMEWHAT INCREASED THE AMOUNT OF LYSOSSOMES IN THE NERVOUS CELLS AND DID NOT CHANGE THE ACTION POTENTIAL OF THE GANGLION. ELECTRON MICROSCOPICAL CHANGES IN INTRODUCTION OF THE SERUM OF SCHIFT LIKE SCHIZOPHRENICS WERE EXPRESSED IN AN EVEN MORE INCREASE IN THE AMOUNT OF LYSOSOMES, A DISTINCT SWELLING OF THE MITOCHONDRIA AND A DESTRUCTION OF THE CRISTS. IN AN EXPANSION OF THE ENDOPLASMATICAL NETWORK, A RAREFACTION OF THE NUCLEAR MATRIX AND A FRAGMENTATION OF THE GOLGI APPARATUS. IN SUCH CONDITIONS THERE WAS A SIGNIFICANT DECREASE IN THE AMPLITUDE OF THE ACTION POTENTIAL IN THE GANGLION. THE SERUM OF PART OF THE PATIENTS WITH NUCLEAR FORMS OF SCHIZOPHRENIA BROUGHT ON A DENSIFICATION OF THE NUCLEAR MATRIX AND NUCLEGET, A FRAGMENTATION AND A NARROWING OF THE APERTURE OF CYSTERNS IN THE ENDUPLASMATICAL NETWORK, A DENSIFICATION IN PART OF THE MITOCHORRIA WITH A DESTRUCTION OF THE CRISTS AND A DECREASE IN THE AMOUNT OF ATTACHED DIBOSOMES. THE AMOUNT OF LYSUSOMES INCREASED SIGNIFICANTLY. THE NEGATIVE PHASE IN THE ACTION POTENTIAL IN THE GANGLION DECREASES SIGNIFICANTLY AND WAS NOT COMPLETELY RESTITUTED. THE SERUM OF THE OTHER PART UF PATIENTS OF THIS GROUP DID NOT INFLUENCE SIGNIFICANTLY. THE ULTRASTRUCTURE ON THE ACTION POTENTIAL OF THE GANGLION.

UNCLASSIFIED

USSR

WC 632.95

VERDEREVSKIY, D. D., VOYTOVICH, K. A., KOBZOV, F. N., KHAKHAM, I. B., and CHERNAYA, N. S.

"Copper Naphthenate Paste -- a Substitute for Bordeaux Mixture in Controlling Apple Tree Scab"

Tr. Kishinev. S.-kh. in-ta (Works of Kishinev Agricultural Institute), 1971, 67, pp 32-34 (from RZh-Khimiya, No 1(II), Jan 72, Abstract No 1N431

Translation: In comparative tests, quadruple spraying of an apple orchard with a 0.6% suspension of copper naphthenate paste was only slightly less effective against scabs on the fruit and leaves than the same application of a 1% solution of Bordeaux mixture. P. Popov.

1/1

- 52 -

USSR

wa 632.95

ZAGARIYA, V. P., and KHAKHAM, I. B.

"Testing PNM-50 Preparation in Controlling Grape Mildew at the Sovkhoz imeni Lenin (Village of Parkana) in the Tiraspol'skiy Rayon in 1966"

Tr. Kishinev. s.-kh. in-ta (Works of the Kishinev Agricultural Institute), 1971, 67, pp 26-29 (from RZh-Khimiya, No 1(II), Abstract No 1N432)

Translation: Sections of a grape arbor sprayed four times with 0.6% copper naphthenate paste (with respect to the active substance) were more effectively protected from damage by mildew than with the same treatment by 1% Bordeaux mixture and a 0.7% suspension of copper oxychloride. P. Popov.

1/1

USSR

UDC: 621.397.62:533.67

KHAKHAREV, V. M.

"Chrominance Decoding Module for a SECAM System Color Television Receiver"

USSR Author's Certificate No 265938, filed 10 Jun 68, published 3 Jul 70 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6G218 P)

Translation: A chrominance decoding module is proposed for a SECAM system color receiver without a delay line for line duration, and with quenching of the "blue" line during transmission of the "red" signal, quenching of the "red" line during transmission of the "blue" signal, and alternate modulation of the "green" beam by red and blue color difference signals. The module contains a frequency detector to which the subcarrier voltage is sent, and also video amplifiers and a flip-flop. As a distinguishing feature of the patent, the module is simplified by connecting the output of the frequency detector to the input of the "blue" color difference amplifier which has a cathode resistor in common with the "red" color difference signal video amplifier. Connected in the output circuits of these video amplifiers are switching elements which are controlled by a signal from the flip-flop with half-line frequency.

USSR

K

UDC: 621.397.132

KHAKHAREV, V. M.

"A Chrominance Decoding Module for SECAM System Color Television Receivers"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 11, 1970, Author's Certificate No 265938, filed 10 June 1968, p 37

Abstract: This author's certificate introduces a chrominance decoding module for SECAM system color television receivers without a line duration delay line and with quenching of the "blue" line during transmission of the "red" signal, quenching of the "red" line during transmission of the "blue" signal, and alternating line modulation of the "green" beam by the red and blue color-difference signals. The unit contains a frequency detector to which a subcarrior voltage is sent, and also video amplifiers and a flip-flop. As a distinguishing feature of the patent, the decoding module is simplified by connecting the output of the frequency detector to the input of the video amplifier for the "blue" color-difference signal, which has a common resistor with the video amplifier for the "red" color-difference signal. Connected in the output circuits of these video amplifiers are elements which are controlled with the half-line frequency by a signal from the flip-flop.

1/1

USSR

K

UDC 621.385.632

BUDNIK, V. V., KHAKHILEVA, G. A.

"Use of Panoramic Voltage Standing-Wave Ratio Meters for Measurement of Matching of Absorbers of Helix Traveling-Wave Tubes"

Elektron. tekhnika. Nauchno-tekhn. sb. Elektron. SVCh (Electronic Technology. Scientific-Technical Collection. Microwave Electronics), 1970. No 1, pp 128-136 (from RZh-Elektronika i yeye primeneniye. No 7, July 1970, Abstract No 7A 138)

Translation: A method is described for measurement of the matching of absorbers of helix TWT with the aid of panoramic voltage standing-wave ratio meters. Use of the latter considerably shortens the time necessary for evaluation of the quality of matching of the absorber and can assure measurement of the voltage standing-wave ratio of the absorber at a level of 1.03 with a rms error not more than plus or minus 3 porcent. 2 ref. Summary.

1/1

<del>-326--</del>

UDC: 681.3:51

USSR

AYLAMAZYAN, A. K., BELOTELOV, V. P., DOLGOPOLOV, V. V., KRAVTSOV, V. G., LOZA, T. M., MARKINA, N. V., KHAKHIN, M. I.

"A Device for Computing Aerodynamic Parameters"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 23, 1970, Author's Certificate No 276528, Filed 28 May 69

Abstract: This Author's Certificate introduces a device for computing aerodynamic parameters such as altitude, velocity, and Mach number. The unit contains converters of primary information to binary code which are connected through a shift register and adder to the input of an arithmetic device. Also included in the computer are a memory unit, decoder, pulse generator, control device, and recording unit. As a distinguishing feature of the patent, the electrical circuit is simplified and the overall dimensions are reduced by connecting the most significant digital places of one of the registers in the arithmetic device to the least significant digital places of the address section of the command register in the control unit through diodes controlled by the decoder and the pulse generator. The most significant digital places of the address section and the code section of the command register in the control device are connected to the memory unit.

## Analysis and Testing

USSR

UDC 669.1.541.015

LASHKO, N. F., SASLAVSKAYA, L. V., KOZLOVA, M. N., MOROZOVA, G. I., SOROKINA, K. P., KHAKHLOVA, N. V., and YAKOVLEVA, YE. F.

"Physical and Chemical Methods of Phase Analysis of Steels and Alloys"

Fiziko-Khimicheskiye Metody Fazovogo Analiza Staley i Splavov (English version above), Moscow, Metallurgiya Press, 1970, 476 pages

Translation of Annotation: Methods of combined physical and chemical phase analysis are systematized and summarized, including methods of phase separation and their chemical and x-ray structural analysis.

Problems of the theory of electrochemical separation of phases, the principles of selection of electrolytes, and methods of phase analysis are analyzed

as applicable to various steels and alloys.

The book is designed for scientific workers of scientific research institutes and plant laboratories involved in the development of steels and alloys, as well as the study of their properties depending on their phase composition. 99 figs, 100 tables, 708 biblio refs.

1/6

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

# 

| • |            |                                                                                                                          |        |  |
|---|------------|--------------------------------------------------------------------------------------------------------------------------|--------|--|
|   | USSR       |                                                                                                                          |        |  |
| • | LASJKO, N. | F., et al., Fiziko-Khimicheskiye Metody Fazovogo Analiza Metallurgiya Press, 1970, 476 pages.                            | Staley |  |
|   |            | TABLE OF CONTENTS                                                                                                        |        |  |
|   |            |                                                                                                                          | 5      |  |
|   | Foreword   | Basic Principles of the Theory of Phase Separation of                                                                    | 7      |  |
|   | Chapter 1. | Multiphase Alloys in Electrolytes                                                                                        | 9      |  |
|   | Chapter 2. | Basic Principles of the Theory of Phase Separation of                                                                    | 21     |  |
|   | Chapter 3. | Methods of Electrochemical Phase Separation of Alloys in Electrolytes                                                    | 51     |  |
|   |            | Apparatus for Electrochemical Separation of Phases in Electrolytes                                                       | 52     |  |
|   |            | Galvanostatic and Potentiostatic Methods of Measuring                                                                    | 64     |  |
|   |            | Differentiation (Selective Etching) of Phases of Multiphase Alloys Methods of Separation of Phases and Phase Analysis of | 68     |  |
|   |            | Steels without Weighing of Specimens (Parts) and Isolated Upsetting                                                      | 78     |  |
|   | 2/6        |                                                                                                                          |        |  |

| USSR                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| LASHKO, N.<br>i Splavov,         | F., et al., Fiziko-Khimicheskiye Ketody Fazovogo Analiza S<br>Metallurgiya Press, 1970, 476 pages.                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Staley                          |  |
| Chapter 4. Chapter 5. Chapter 6. | Primary Types of Chemical Compounds in Alloys Based on Various Metals  Phase Analysis of Alloys Based on Iron  Primary Problems of Isolation of Carbides from Carbon and Alloy Steels  Dispersion of Grains and Structures of Steels  Isolation and Specific Features of Residual Austenite Isolation of Ferrite from Autenitic-Ferritic Steels  Determination of Phase Composition and Distribution of Alloying Elements in Austenitic Heat-Resistant Steels in the System Fe-Cr-Mm-Ni-V-Nb-Mo-W, Containing Me <sub>23</sub> C <sub>6</sub> and MeC Carbides | 144<br>146<br>161<br>163<br>168 |  |
| 3/6                              | Cast Irons and Graphitizing Steels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 177                             |  |

|                           | USSR                     |                                                                                               |        |
|---------------------------|--------------------------|-----------------------------------------------------------------------------------------------|--------|
|                           | LASHKO, N.<br>1 Splavov, | F., et al., Fiziko-Khimicheskiye Metody Fanovogo Analiza Metallurgiya Press, 1970, 476 pages. | Staley |
|                           |                          | Certain Specifics of Isolation of Phases from<br>Beryllium-Containing Heat-Resistant Steels   | 182 .  |
|                           |                          | Methods of Isolation of $\sigma$ -phases from Steels and                                      |        |
|                           |                          | Iron Racad Alloys                                                                             | 184    |
|                           |                          | Isolation of FeeW Phases from Steels                                                          | 190    |
|                           |                          | Isolation of Phases of the Structural Type q-Mn (x-phase) from Steels                         | 193    |
|                           |                          | Isolation and Analysis of Z-phase from Nitrogen-                                              |        |
|                           |                          | Containing Chrome Niobium Steels                                                              | 196    |
|                           |                          | Phase Analysis of Chrome-Nickel-Titanium Steels                                               |        |
| 2 P. 1                    |                          | with Basic Hardening of Phases β-Ni3Ti or Ni3(Ti,                                             |        |
|                           |                          | 41)                                                                                           | 198    |
|                           |                          | Certain Methods of Isolation of Carbides from Steels                                          | •      |
|                           |                          | + Chabla Datentials                                                                           | 209    |
|                           | Chapter 7.               | Methods of Separation of Phases of Anida Rescipitate.                                         |        |
| e <del>le</del> ce<br>e l | Chapter 7.               |                                                                                               | 221    |
|                           | Chapter 8.               | Prevention and Elimination of Products of Secondary                                           | 240    |
|                           | <b></b>                  | Reactions in Electrolytes                                                                     | 240    |
|                           | 116                      |                                                                                               |        |
|                           | 4/6                      | · 3 ···                                                                                       |        |

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

|              | F., et al., Fiziko-Khimicheskiye Metody Fazovogo Amaliza                                                    | . Staley |
|--------------|-------------------------------------------------------------------------------------------------------------|----------|
| i Splavov, l | etallurgiya Press, 1970, 476 pages                                                                          |          |
| Chapter 9.   | Methods of Determining Various Forms of Carbon in                                                           |          |
|              | Steels and Alloys                                                                                           | 254      |
| Chapter 10.  | Methods of Phase Analysis of Nickel Steels Methods of Phase Analysis of Nickel Steels Hardened              | 278      |
|              | by γ Phases Based on Ni3Al and Ni3(Al, Ti)                                                                  | 286      |
|              | Methods of Isolation of Carbide and Boride Phases                                                           | 312      |
|              | Methods of Isolation of σ and μ Phases                                                                      | 320      |
|              | Intermetallic Phases Based on Ni3Nb, Ni3Ti, and Ni3Ta<br>Methods of Isolation of Phases and Alloys Based on | 328      |
|              | Ni-Be                                                                                                       | 342      |
|              | Ni-Mo-Cr-Fe                                                                                                 | 344      |
| Chapter 11.  | Methods of Phase Analysis of Copper-Nickel Alloys                                                           | 348      |
| <del>-</del> | Methods of Phase Analysis of Titanium Alloys                                                                | 355      |
| Chapter 12.  | Methods of Phase Analysis of Magnesium Alloys                                                               | 365      |

| USSR                           |                                                                      |                                                                                                                                        |                                                                            |         |                                 |  |
|--------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|---------------------------------|--|
| IASHKO, N<br>i Splavov         | N. F., et al.,<br>V, Metallurgiya                                    | Fiziko-Khimicheskiy<br>Press, 1970, 476 p                                                                                              | e Metody Fazovogo                                                          | Analiza | Staley                          |  |
| Chapter 1 Chapter 1 Chapter 16 | 4. Methods of Methods of Methods of Methods of Methods of Methods of | Phase Analysis of A<br>Phase Analysis of A<br>Phase Analysis of A<br>Phase Analysis of A<br>Isolation of Phases<br>Layer-by-Layer Phys | Aluminum Alloys<br>Refractory Alloys<br>Holybdenum Alloys<br>Hobium Alloys | rials   | 396<br>407<br>419<br>425<br>425 |  |
|                                | mase mary                                                            | 313                                                                                                                                    |                                                                            |         | 431                             |  |
| 6/6                            |                                                                      |                                                                                                                                        |                                                                            |         |                                 |  |

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

1/2 008

UNCLASSIFIED

PROCESSING DATE--11SEP70

TITLE--EFFECT OF SUBSTITUENTS ON THE DISSOCIATION OF THE HYDROXY GROUPS ON THE NAPHTHALENE RING OF BISAZO SUBSTITUTED CHROMOTROPIC ACID -U-

AUTHOR-PETROVA, T.V., KHAKIMKHODZHAYEV, N., SAVVIN, S.B.

COUNTRY OF INFO--USSR

SOURCE-ZH. ANAL. KHIM. 1970, 25(2), 226-30

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--DISSUCIATION CONSTANT, HYDROXYL RADICAL, NAPHTHALENE, ORGANIC AZO COMPOUND, CONJUGATE BOND SYSTEM, ORGANIC SULFUR COMPOUND

CONTROL MARKING--NO RESTRICTIONS

DOSUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/1058

STEP NO--UR/0075/70/025/002/0226/0230

CIRC ACCESSION NO--APO104456

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

i i rang sa isali ini i i ki masatsa (i ki mi i mandanini kesamana kasi ang sa mad m

Z/Z 008 UNCLASSIFIED PROCESSING DATE--11SEP70
CIRC ACCESSION NO--APOl04456
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE DISSOCN. OF THE OH GROUP OF
THE NAPHTHALENE NUCLEUS FOR 27 BIS(PHENYLAZO SUBSTITUTED) CHROMOTPOPIC
ACIDS WITH THE SO SUB3 H. CO SUB2 H. OH. OME ANE ME GROUPS IN THE C SUB6
H SUB6 NUCLEI IN DIFFERENT POSITIONS WAS STUDIED. AN INDUCTION EFFECT
OF SUBSTITUENTS TOGETHER WITH A CONJUGATION EFFECT EXISTS FOR REAGENTS
WITH SUBSTITUENTS IN THE M AND P POSITIONS IN THE C SUB6 H SUB6 RINGS.
THUS, SOME OF THE SUBSTITUENTS INCREASE AND SOME OECREASE THE ACID
PROPERTIES OF THE OH GROUPS. SUBSTITUENTS IN THE O POSITION,
IRRESPECTIVE OF THEIR CHARACTER, DECREASE THE ACID. PROPERTIES OF THE
REAGENTS, OWING TO STABILIZATION OF THE QUINONE HYDRAZONE FORM OF THE
REAGENT.

APO 019845 CHEMICAL ABST.

ABST. 2-7

4R0375

28028a Type of color reactions of alkaline earth elements with bisazo-derivatives of chromotropic acid. Sayvin, S. B.; Kuzin, E. L.; Petrova, T. V.; Khakimkhodzhagy, N. (In t. Geochem. Anal. Chem., Moscow, USSR). 2k. Anal. Chin. 1969, 24(9), 1325-31 (Russ). Bisazo derivs, of chromotropic acid (I) and alk. earths interact in an acid medium (pH 2.5-4.0) in a 2:1 molar ratio to form complexes with max. absorbance at 10:20 or at 760 mg, when the substituting groups are OH or OMe. The stability of the complexes increases in the Mg-Ca-Sr-Ba sequence. Color reactions with the greatest color difference between I and alk. earths were attributed to the participation of the quinone hydrazone form in the complex fermation of the reagent, in which the metal interacts with the azohydroxy group. The existence of the 2 close max. In the spectra was attributed to the formation of a sandwich type dimer, in which are and hydraxe forms of the reagents participate as monomers. When taking into account the stoichiometric ratio M: I = 1:2, the following

19611716

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

UNCLASSIFIED PROCESSING DATE--300CT70
TITLE-NEW ORGANIC REAGENTS FOR THE PHOTOMETRIC DETERMINATION OF BARLUM.
STRONTIUM, CALCIUM, AND SULFATE ION -UAUTHOR-(03)-PETROVA, T.V., KHAKIMKHODZHAYEV, N., SAVVIN, S.B.

COUNTRY OF INFO-USSR

SOURCE-IZV. AKAD. NAUK SSSR. SER. KHIM. 1970, (2), 259-65

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS-PHOTOMETRIC ANALYSIS, BARIUM, STRONTIUM, CALCIUM, SULFATE, COMPLEX COMPOUND/(U)KUZ ION EXCHANGE RESIN

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1539

STEP ND--UR/0062/70/000/002/0259/0265

CIRC ACCESSION NG--APO125167

UNCLASSIFIED

PROCESSING DATE--300CT70 UNCLASSIFIED .018 2/3 CIRC ACCESSION NO-APO125167 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. 2,7, BISAZO DERIVS. DE CHROMUTROPIC ACID WERE SUGGESTED AS ANAL. REAGENTS MAINLY FOR BA AND SR. AS WELL AS FUR OTHER ALK. EARTHS. CHROMOTROPIC ACID WAS COUPLED IN ALK. SOLN. WITH DIAZOTIZED AMINES IN THE PRESENCE OF SALTS OF LI AND NA WHICH SERVED AS THE FOLLOWING CONDITIONS WERE DETD. EXPTL. FOR SPECTROPHOTOMETRY OF THE INDICATED METAL IONS IN AQ. SOLN. (UNLESS MENTIGNED OTHERWISE) FOR DERIVS. OF I (X SHOWN): I, X EQUALS 4,H, NO DETAILS: I. X EQUALS P.NO SUB2, CU PH 2,4, TH PH 1.6,2, LA PH 2,4; I X EQUALS P, SO SUB3 H, LA PH 3,4 IN SOPERCENT ETOH, TH PH 1,5,2, CU PH 2,6; T. X EQUALS M.SO SUB3 H. LA PH 3.5.5 IN SOPERCENT ETOH, TH PH 1.5,2.5, CU PH 3.6: I. X EQUALS P.ASO SUB3 H SUB2, TH PH 3.5.4, CU PH 2.5,4, LA PH 2.8,3.5. THE ABSORPTION SPECTRA OF THE ACIDS AND THEIR METAL COMPLEXES WERE REPORTED AND CALIBRATION CURVES SHOWN FOR DETN. OF BA. SR, AND SO SUB4 PRIMEZ NEGATIVE. I, X EQUALS P, NO SUB2, WAS BEST FOR THE PHOTGMETRIC DETN. OF SR, BA, AND SO SUB2 PRIMEZ NEGATIVE. COLOR TESTS FOR AL AND PB WITH I WERE ALSO POSSIBLE. OTHER I TESTED INCLUDED THOSE WITH X EQUALS M, NO SUBZ, P, ME, M, ME, P, MED, M, CO SUBZ H AND P, CL. FUR PHOTOMETRIC DETN. OF SMALL AMT. OF SO SUB4 PRIME2 NEGATIVE THE COMPLEX OF BA WITH I, X EQUALS P, NO SUB2, WAS USED AS AN INDICATOR IN AQ. ETOH.ME SUBZ CO: THE METHOD WAS USEFUL FOR DETN. OF SD SUB4 PRIMEZ NEGATIVE IN TAP HATER: THE SAMPLE WAS PASSED OVER KUZ ION EXCHANGE RESIN IN H POSITIVE FORM TO REMOVE THE INTERFERING CATIONS, THENANALYZED COLORIMETRICALLY IN THE PRESENCE OF THE BA-I COMPLEX. DETN. OF 4.5 GAMMA BA AND SR WAS POSSIBLE.

UNCLASSIFIED

| 3/3 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | PROCESSING DATE300CT70 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| CIRG ACCESSION NO-APO125167 ABSTRACT/EXTRACT-FACILITY: MOSCOW, USSR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INST. GEOKHIM. ANAL. | KHIM. IM. VERNADSKOGO. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
| [12]<br>12] - 12] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - 13] - |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
| 유럽 다른 경기 등 기계                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
| 생물이 되었다.<br>생물이 기계를 보고 있는 것이 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
| in Anthony (1997)<br>Annual Communication (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                        |
| UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CLASSIFIED           |                        |

USSR

UDC 621.791.793.052.01.669.017.3.669.14.013.298.3

KHAKIMOV, A. N., Candidate of Technical Sciences, YEFIMENKO, L. A., Engineer, and PHYGAYEV, A. K., Engineer, Moscow Institute of the National Economy imeni G. V. Plekhanov and GP (abbreviation unknown) imeni I. H. Gubkina; SMIRNOV, B. A., Candidate of Technical Sciences, IVOCHKIN, I. I., Candidate of Technical Sciences, SCSEDOV, A. F., Engineer, and ROSHCHUPKIN, N. P., Engineer, All-Union Scientific Research Institute Montachspetsstroy

"Regulation of the Structure and Properties of Welded Joints of 10G2FR Heat-Treated Steel in Electroslag Welding"

Moscow, Svarochnoye Proizvodstvo, No 1(471), Jan 74, pp 24-26

Abstract: A study was made of the conditions for the regulation of the structure and properties of electroslag-welded joints of 10G2FR heat-treated low-alloy sheet steel, 40 mm thick, with a view to increase the structural-mechanical homogeneity of welded joints. The introduction of a powerlike additive metal into the slag bath favors a reduction of the stay period over the temperature of the critical point Ac<sub>3</sub> of the near-seam metal at heating from 45-50 to 10-12 sec., an increase of the heating rate from 8-10 to 35-40°C/sec, and nearly two-fold increase of the welding rate. The application of 1/2

USSR

KHAKIMOV, A. N., et al., Svarochnoye Proizvodstvo, No 1(471), Jan 74, pp 24-26

accompanying cooling makes it possible to decrease the stay period over the Ac3 temperature of the near-seam metal on cooling from 140-170 to 80-95 sec and to increase the cooling rate from 0.7-1 to 13.5-140 C/sec. At 12.5-140 C/sec cooling rate, the impact ductility of the seam and the near-seam zone of welded joints of 10g2FR heat-treated steel increases up to a level exceeding the Joints of logera near-treated steel increases up to a level exceeding the norm values within the temperature interval of 20 to -60° C, and a loss of strength is practically prevented. Six figures, three tables, two bibliographic references.

2/2

- 51 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

USSR

1/2

MAKHMUDOV, Ya. Kh., KHAKIMOV, Kh. A., and OGICHLINA, N. M., Uzbek Scientific Research Institute of Hematology and Blood Transfusion

**三十二年,中国中国中国中国** 

"Obtaining Large Amounts of Donor Plasma through Plasmapheresis"

Tashkent, Meditsinskiy Zhurnal Uzbekistana, No 6, 1970, p 53

Translation: The effects of repeated plasmapheresis on the donor's organism were studied. Over the course of two years, 80 persons aged 20 to 50, who had been donors for one to 20 years or more, were examined. Because plastic bags and a special centrifuge were not available, 500-milliliter flasks made of domestic glass of the NS-2 brand were used; they underwent chemical and physical processing, sterilization, and centrifugation at 1,500-3,000 rpm without cooling. Microscopic examination of the blood after centrifugation revealed that no damage was done to the formed elements. The donors were examined in the usual manner; in addition, their liver functions were tested and the concentration of plasma proteins and their fractions was measured. The flasks with blood were equilibrated on a balance and centrifuged for 20 minutes at 1,500 rpm. The plasma was drawn off, and the formed elements were reinfused into the donors. On the average 250 ml of plasma were obtained from 400 ml of blood per donor. Most plasma donors displayed small fluctuations in their hematological indices, but these were essentially within the

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

NOT TREATED PROTEST (STEWART IN THE STATE STATE IN THE STATE OF THE ST

USSR

MAKHMUDOV, Ya. Kn., et al, Meditsinskiy Zhurnal Uzbekistana, No 6, 1970, p 53

normal range. No post-transfusion complications were observed in either the donors or the patients. The results indicate that the method of plasmapheresis on a centrifuge without cooling is harmless, and that it can be recommended for wide use in the blood transfusion service.

2/2

1/2 010 UNCLASSIFIED PROCESSING DATE--20NOV70 TITLE--COMPLEXES OF COBALT, II, AND COBALT, III, WITH ISONICOTINIC ACID

HYDRAZIGE AND SCME OF ITS DERIVATIVES -U-

AUTHOR-(03)-KHAKIMOV, KH.KH., SHABILALOV, A.A., AZIZOV, M.A.

CEUNTRY OF INFO--USSR

SOURCE--ZH. NEORG. KHIM. 1970, 15(4), 1022-6

DATE PUBLISHED ---- 70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-MOLECULAR STRUCTURE, HETEROCYCLIC NITROGEN COMPOUND, ORGANIC COMPLEX COMPOUND, CHEMICAL SYNTHESIS, ORGANICOBALT COMPOUND, HETEROCYCLIC OXYGEN COMPOUND, AZIOE

CENTROL MARKING--NO RESTRICTIONS

DCCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3004/2032

STEP NO--UR/0078/70/015/004/1022/1026

सम्बद्धान्त्र । १९ वस्य वस्य १० । इस्तर व्यवस्थान वस्य १० ।

CIRC ACCESSION NO--APO132289

UNCLASSIFIED

PROCESSING DATE--- 20 NOV 70 UNCLASSIFIED 010 2/2 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. IN ORG. SOLVENT SOLNS., COCL SUB2 CIRC ACCESSION NO--APO132289 .6H SUB2 G FORMS ADDUCTS WITH ISONICOTINIC ACID HYDRAZIDE (I), II, III, OR IV AND IN BASIC SOLNS. IT FORMS COMPLEXES. THE SYNTHESIS OF ISHOWN ON MICROFICHE) IS GIVEN AND THEIR SCLY. IN WATER, MPS., AND ELEC. COND. ARE GIVEN. THE INVESTIGATED LIGANDS EASILY REPLACE ALL NG SUB2 GROUPS IN NA SUB3 (CO(NO SUB2) SUB6). H SUB2 O IN THESE COMPLEXES IS IN THE OUTER SPHERE. COMPN. OF THE PRODUCTS IS INDEPENDENT OF REACTANT RATIO FACILITY: WHEN NA SUB3 (CO(NO SUB2) SUB6) IS USED AS A REACTANT. TASHKENT. FARM. INST., TASHKENT, USSR. UNCLASSIELED 

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

UNCLASSIFIED PROCESSING DATE--20NOV70

1/2 020

UNCLASSIFIED PROCESSING DATE--20NOV70

TITLE--USE OF A GAMMA ACTIVATION METHOD FOR THE QUANTITATIVE DETERMINATION

OF NITROGEN AND PROSPHCRUS IN MUDIFIED CELLULOSE PREPARATIONS -U
AUTHOR-(05)-YUCASHEV, A.YU., MILLER, R.A., KHAKIMOV, M., MURATOVA, U.M.,

SADYKCV. M.M.

CCUNTRY OF INFC--USSR

SGURCE--VYSGKCMEL. SCEDIN., SER. A 197C, 12(4), 957-9.

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS, CHEMISTRY

TOPIC TAGS--QUANTITATIVE ANALYSIS, NITROGEN ISOTOPE, PHOSPHORUS ISOTOPE, CELLULOSE, X RAY RADIATION, NEUTRON ACTIVATION ANALYSIS, CAMMA RADIATION, RADIOACTIVE DECAY, PHOTONUCLEAR REACTION

CENTROL VARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3006/1380

STEP NO--UR/0459/70/012/004/0957/0959

iyka padamani hamiya kurik ili i iki mbahani ya i mi i mtariyetki baka bahar i mel aya arkani bahar manakabisaba tak

CIRC ACCESSION NO-+AP0135054

UNGCASSIFIED

PROCESSING DATE--20NOV70 UNCLASSIFIED 020 2/2 CIRC ACCESSION NO--AP0139054 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE IRRADM. OF MODIFIED CELLULOSE CONTG. PLAND N WITH GAMMA RAYS OF 15. MEY ENERGY CAUSES THE FOLLOWING PHOTONUCLEAR PROCESSES: PRIMEIA N PLUS GAMMA YIELDS PRIMEIS N PLUS N (ABOVE 10.5 MEV THRESHOLD) AND PRIMEST P PLUS N (ABOVE 12.05, MEV THRESHOLD). PRIMETS C AND PRIMETO O REQUIRE ENERGIES GREATER THAN 15 MEV TO REACT. SINCE THE HALF LIVES OF PRIMEIS N AND PRIMESO P ARE 10.08 AND 2.5 MIN, RESP., MEASUREMENT OF THE RADIOACTIVITY DECAY AFTER IRRADN. GIVES A MEANS FOR KAPID DETN. OF P AND N. FACILITY: TASHKENT. GOS. UNIV. IM. LENINA, TASHKENT, USSR. 

UDC 591.81:577.391

USSR

KHAMIDOV, D. K., KHAKIMOV, P. A., KOLESHIKOVA, S. S., and MAMATALIYEV, U., Institute of Biochemistry, UzbekSSR Academy of Sciences

"Study of the Effect of Ionizing Radiation on the Mitotic Activity of Cells in a Culture"

Tashkent, Uzbeskiy Biologicheskiy Zhurnal, No 2, 1971, pp 10-12

Abstract: Plant growth and development are stimulated by the action of comparatively low doses of ionizing radiation. The crop yield is likewise enhanced. Together with the increase in biomass, the cell dimensions are increased. Similar results were obtained in the irradiation of bacteria. The authors set out to study the effect of comparatively low doses of gamma-radiation on the mitotic activity of cells under culture conditions. Ascitic cancer cells (Ehrlich) and human cancer cells (Hela) were used in the study. The mitotic activity of the former was determined during 6-7 days of development, after preliminary introduction of 0.3 ml (at a concentration of 60-70-ment, after preliminary introduction of 0.3 ml (at a concentration with 25 centred produced acceleration of the mitotic activity of both types of cells roentgen produced acceleration of the mitotic activity of both types of cells studied (43-45% increase in the Hela cells, 28% increase in the Ehrlich cells). Acceleration of cell division activity was observed with radiation doses of 1/2

KHAMIDOV, D. K., et al., Uzbekskiy Biologicheskiy Zhurmal, No 2, 1971, pp 10-12

up to 100 roentgen. With doses of 100-300 roentgen, the number of dividing cells was equal to that of the normal cells. However, the number of cells approaching the prophase increased and the amount of metaphase lamellae rerained unchanged. With a dose of 600 roentgen, some inhibition of mitotic cell division was observed. The nuclei were pyknotic. The number of granular lumps of DNA was decreased. With a dose of 3 Kr, no mitoses were observed. The acceleration of cell division under the effect of low games,-radiation doses is attributed to an increase in content and synthesis of nucleic acids in the cell. The authors propose that low doses of ionizing radiation stimulate the transmission of the G period of cells or the entry of the cells or the entry of the cells into the cellular cycle out of the Go period of

mitotic cell division. It is possible, in the opinion of the authors, that with low gamma-radiation doses, small quantities of radiation anabolites are formed, which effect the life activity of the cells.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1" USSR

UDC 581.19:616-006:577.391

KHAMIDOV, D. KH., KHAKIMOV, P. A., and MAMATALIYEV, U., Institute of Biochemistry, Academy of Sciences, Uzbek SSR

"Cytofluorometric Study of Nuclear DNA Proteins in Cell Cultures Exposed to Ionizing Radiation"

Tashkent, Uzbekskiy Biologicheskiy Zhurnal, No 2, 1970, pp 7-10

Abstract: Study of the dynamics of radiation injury to Ehrlich ascites cancer and HeLa cells showed that the intensity of luminescence of the nuclei varied with the radiation dose and time since exposure. For example, the luminescence of Ehrlich ascites nuclei increased at a dose of 0.5 kr. reaching a peak at 3 kr, but slowed with further increase in the dose (6 kr). The intensity of lumine-with further increased 30 min after exposure, reaching a peak after two scence increased 30 min after four hours. DNA and the main protein hours, and decreasing after four hours. DNA and the main protein were found to affect the intensity of secondary luminescence of both normal and irradiated cells. After DNA was removed from the nuclei by treating them with DNAse, the intensity of luminescence sharply decreased 1/1

1/2 028 UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--CYTOFLUORIMETRIC INVESTIGATIONS OF NUCLEAR DNA PROTEINS IN CULTURED

CELLS EXPOSED TO IOMIZING RADIATION -U-AUTHOR-(03)-KHAMIDOV, D.KH., MAMATALIYEV, U., KHAKIMOV, P.A.

COUNTRY OF INFO--USSR

SOURCE--UZB. BIOL. ZH. 1970, 14(2), 7-10

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--DNA, RADIATION DAMAGE, FLUORESCENCE, CELL PHYSIOLOGY, NUCLEUS, LONIZING RADIATION, COBALT ISOTOPE

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3008/0446

STEP NO--UR/9079/70/014/002/0007/0010

CIRC ACCESSION NO--APO137537

UNCLASSIFIED

PROCESSING DATE--27NOV70 UNCLASSIFIED. 2/2 028 CIRC ACCESSION NO--APO137537 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. INVESTIGATION OF THE DYNAMICS OF RADIATION DAMAGE IN EHRLICH ASCITES AND HELA CELLS HAS SHOWN THAT THE INTENSITY OF FLUORESCENCE OF CELL NUCLEI INCREASES IN PROPORTION TO THE RADIATION DOSE AND TIME AFTER IRRADN. PRIMEGO CO GAMMA IRRADN. WAS EMPLOYED AT DOSES OF 0.5, 1, 3, AND 6KR, AT A DOSE RATE OF 15 R-SEC. CELLS SMEARS WERE FIXED AND STAINED WITH ACRIDINE GRANGE, AND THE INTENSITY OF FLUORESCENCE OF CELL NUCLEI MEASURED ON A CYTOFLUORIMETER. PARTIAL DNA EXTN. WAS ACHIEVED BY MEANS OF DNASE TREATMENT, AND HISTORES WERE REMOVED FROM THE NUCLEI WITH TRYPSIN. MAX. INCREASE IN SECONDARY FLUORESCENCE IN EHRLICH ASCITES CELLS WAS DBSD. AT A DOSE OF 3 KR; THE MAX. INTENSITY OCCURRED 2 HR AFTER IRRADN. AFTER TREATMENT WITH DNASE, THE INTENSITY OF FLUORESCENCE DECREASED MARKEDLY (2.3 TIMES, IN COMPARISON WITH LEVELS OBSD. 2 HR AFTER IRRADN. WITH 3 KR). AFTER TRYPSINIZATION, THE INTENSITY INCREASED 35PERCENT IN COMPARISON WITH THAT OF CELLS TREATED ONLY WITH DNASE. COMPARISON WITH NONIRRADIATED CONTROL CELLS SUGGESTS THAT AFTER EXPOSURE TO TONIZING RADIATION, THE RATIO BETWEEN DNA AND PROTEINS CHANGES AND METABOLISM IN THE IRRADIATED FACILITY: INST. BIOKHIM., TASHKENT, CELLS IS SHARPLY DISTURBED. USSR.

UNCLASSIFIED -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

USSR

UDC 591.1.15

KHAMIDOV, D. KH., KHAKIMOV, P. A., and MAMATALIYEV, U.

"Luminescent Cytochemical Study of the Adrenal Cortex Proteins Subjected to Ionizing Radiation"

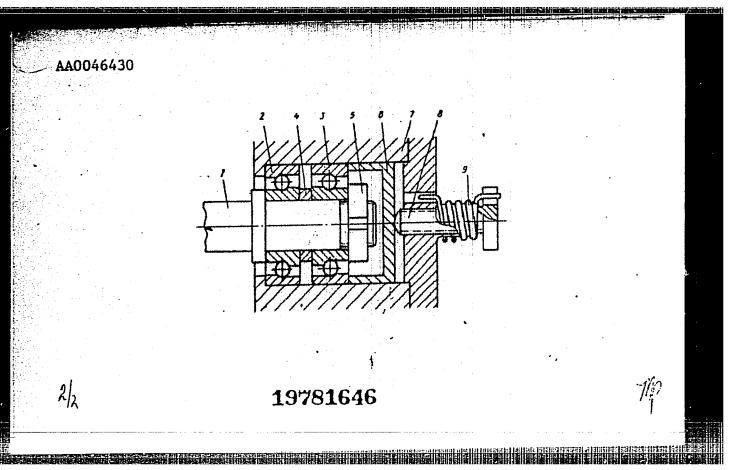
Tashkent, Doklady Akademii Nauk UzSSR, No 7, 1972, pp 58-60 (from Referativnyy Zhurmal -- Biologicheskaya Khimiya, No 22, 1972, Abstract No 22F1604)

Translation: Concentration of high-molecular proteins in sections of the adrenal cortex of white male rats was studied 1, 6, 18, 24 hr, and 3, 7, 14, and 30 days after \( \gamma^2\) -radiation (\( \frac{60}{Co} \)) with doses of 50, 100, 200, 400, 900, and 1200 r. The obtained results showed that the function of the cortex layer of adrenal glands increases soon after the irradiation, even in the case of large doses (900-1200 r). The biosynthesis of hormones by the adrenal glands was inhibited at later dates, and it was accompanied by a quantitative decrease of proteins in the adrenal cortex cells.

1/1

# KHAKIMOV R.G.

AA0046430\_


Soviet Inventions Illustrated, Section III Mechanical and General, Derwent, 1-70

228396 ROCKER BEARING CLEARANCE SELECTOR consisting of shaft 1, rocker bearings 2 and 3, spacer 4, lock-nut 5 and shaped pressure washer 6. In order to compensate for axial play from running wear, the selector's pressure screw 8 has a self-stopping thread and a torsion spring which has one end passing through a hole in the casing 7 and the other through a slot in the head of screw 8. The torque created by spring 9 is turned by the screw coupling into an axial refort applied through pressure nut 6 to the outer race of bearing 3 and via the spacer to bearing 2.
7.7.67. as 1170049/25-27, KHAKIMOV, R.G. (2.6.69) Bul. 31/8.10.68. Class 47b, Int. C1. F 06c.

18

19781645

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"



APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

1/2 017 UNCLASSIFIED PROCESSING DATE--160CT70

TITLE--SEARCH FOR THE DIRAC MONOPOLE AT THE TO GEV I.P.H.E. PROTON SYNCHROTRON -U-

AUTHOR-105)-GUREVICH, I.I., KHAKIMOV, S.KH., MARTEMIANOV, V.P., MISHAKOVA,

COUNTRY OF INFO--USSR

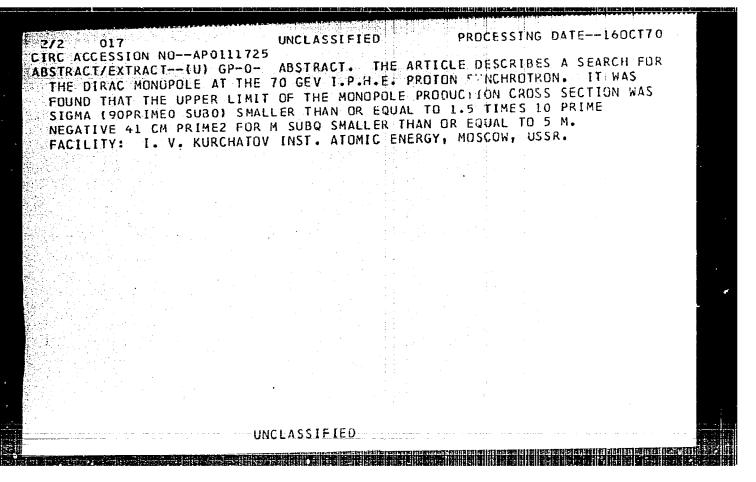
SOURCE-PHYS. LETTERS (NETHERLANDS) VOL. 318, NO. 6, P. 394-6 [16 MARCH

1970) DATE PUBLISHED----70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--PROTON ACCELERATOR, SYNCHROTRON, MAGNETIC POLE, PARTICLE CROSS

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED

PROXY REEL/FRAME--1992/0532

STEP NO--NE/0000/70/003/006/0394/0396

CIRC ACCESSION NO--APO111725

UNCLASSIFIED



Graphite

wc 669.3.035.2

USSR

YELYUTIN, V. P., KOSTIKOV, V. I., DERGUNOVA, V. S., SHURSMAKOV, A. N., POSOS'YEVA, G. D., and KHAKIMOVA, D. K.

"Effect of the Degree of Efficiency of a Graphite Grid on the Velocity of its Treatment with Liquid Zirconium"

Tsvetnye Metally, No 4, Apr 71, pp 51-52

Abstract: Studies were continued on the penetration of liquid metals, in this case, zirconium, into the pores of graphite. Previous work showed that the penetration of zirconium into the pores reached a maximum and that zirconium carbide was formed. In the present work, a study was made of the effect of the ideal structure of the porous graphite on the velocity of penetration by the liquid zirconium. Cylindrical samples of carbon 20 mm in diameter and 60 mm in length were prepared from PROG-2400 stock. The samples were fired in an annular kiln at 1250°C for 280 hours, placed in graphite crucibles, covered with coke, and graphitized in a vacuum of 5 x 20-2 mm at 2000, 2400, and 2800°C for one hour.

X-ray diffraction patterns were made to determine the degree of conversion and then the samples were saturated with liquid zirconium at 1800, 2100, and 2250°C. The contact time varied between 5 to 20 sec; the velocity

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1" USSR

YELYUTIN, V. P., et al., Tsvetnye Metally, No 4, Apr 71, pp 51-52

in the rise of the melt in the pores was determined. X-ray diffraction showed that the samples processed at 2000°C have a turbestratic carbon structure. Thermal processing at 2400 and 2800°C leads to the appearance and breakdown of a three-dimensional ordering. The method of Faur and Mering breakdown of a three-dimensional ordering. The increase in the was used to determine the extent of graphitization. The increase in the height of the melt in the pore with time gives a parabolic curve.

The average velocity of penetration is decreased with an increase in the interplanar constant and is the largest at 2100°C. As the melt penetrates along the surface of the pore, a chemical reaction occurs at the trates along the surface of the pore, a chemical reaction occurs at the liquid zirconium-graphite interface, forming zirconium decreases as a result of the precipitation of zirconium carbide and a diffusion of carbon across the carbide layer.

The viscosity of the liquid zirconium also increases due to the presence of zirconium carbide and this in turn slows the penetration. The extent of graphitization can change the velocity of the firing process even without temperature changes.

2/2

- 24 -

A SERVICE OF THE PROPERTY OF T

UDC 631.859.13.546.47

USSR

MUKHAMEDZHANOV, M., KHAKIMOVA, V. K., and VISHNYAKOVA, A. A., Institute of Chemistry, Academy of Sciences Uz. SSR

"Behavior of the Trace Element Zinc During the Production of Ammophos"

Tashkent, Uzbekskiy Khimicheskiy Zhurnal, No 2, 1971, pp 15-16

Abstract: The composition of zinc salts in ammophos bulk was studied by mixing phosphoric acid with zinc sulfate followed by addition of ammonia. It was found that prior to addition of ammonia no reaction took place in the mixture. When ammonia was bubbled in, again no reaction was observed up to pH 2.4. In the range 2.4-3.5 some reaction occurred producing small amounts of  $\text{Zn}(\text{H}_2\text{PO}_4)_2$ . Only when the pH was increased to above 3.5, solid phase began to appear in the mixture. A product with the formula ZnNH<sub>4</sub>PO<sub>4</sub> was isolated. Presumably this material was formed in the ammophos due to the microadmixtures of zinc.

1/1

\_ 38 --

1/2 017 UNCLASSIFIED PROCESSING DATE--27NDV70
TITLE--DETERMINATION OF MOLYBDENUM AND ZINC IN FERTILIZERS AND PHOSPHATE

RAW MATERIAL -U-AUTHOR-(03)-NABIYEYA, M.M., KHAKIMOVA, V.K., AULESHEVA, M.

COUNTRY OF INFO--USSR

SOURCE--UZB. KHIM. ZH. 1970, 14(1), 6-7

DATE PUBLISHED ---- 70

SUBJECT AREAS -- AGRICULTURE, CHEMISTRY

TOPIC TAGS--FERTILIZEP, CHEMICAL ANALYSIS, MOLYBDENUM, POLAROGRAPHIC ANALYSIS, ZINC, COLORIMETRY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/0005

STEP NO--UR/0291/70/01+/001/0006/0007

CIRC ACCESSION NO--APO137204

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--27NOV7C
CIRC ACCESSION NO--APO137204
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE CONTENT OF MO IN FERTILIZERS
WAS DETD. POLAROGRAPHICALLY, AFTER REMOVING THE INTERFERING ELEMENTS FR,
IN, V, ETC., BY TREATING THE SAMPLES WITH MINERAL ACIOS AND IONEX
COLUMNS. ZN WAS DETD. COLORIMETRICALLY. VARIOUS FERTILIZERS CONTAINED
0.04-1.04 TIMES 10 PRIME NEGATIVE3 PERCENT MO AND 0.5-6.0 TIMES 10 PRIME
NEGATIVE3 PERCENT ZN. FACILITY: INST. KHIM., TASHKENT, USSR.

#### 

USSR UDC: 539.294

AZIMOV, S. A., MUMINOV, R. A., NURKUZIYEV, G., KHAKNAZAROVA, Sh., Physicotechnical Institute imeni S. V. Starodubtsev, Academy of Sciences of the UzbekSSR

"Reactance Properties of Germanium Diodes With Double Injection"

Tashkent, IAN Uzbekskoy SSR, Seriya Fiziko-Matematicheskikh Nauk, No 3, 1971, pp 40-42

Abstract: The paper presents the results of research on the reactance properties of diodes with double injection (P<sup>+</sup>-N-N<sup>+</sup> structures) made on the basis of relatively pure germanium single crystals of N-type with initial impurity concentration of 5·10<sup>12</sup>/cc. The injection contacts on these specimens were made by alloying; the area of the PN junction was determined by the cross section of the crystal -- 0.4 × 0.4 mm<sup>2</sup>; the distance between opposite contacts was 0.4 mm. The reactance properties of the diodes were measured on a bridge circuit at a temperature of 77°K. The frequency of the small alternating signal varied from 1 to 45 MHz. The current-voltage characteristic as well as curves showing capacitance as a function of forward biasing current at various frequencies and curves for conductance as a function of current at various frequencies are given.

USSR

AZIMOV, S. A., et al., IAN UZSSR, Ser. Fiz.-Mat. Nauk, No 3, 1971, pp 40-42

The results show that inductive reactance in germanium diodes with rectifying contacts under the given conditions is due to change in the lifetime of the charge carriers. An increase in carrier lifetime causes injection over a considerable length of crystal and formation of an electron-hole plasma throughout the base region. The resultant plasma has constant inductance in the 10-30 ma-surrent region at frequencies from 10 to 30 MHz. Three figures, bibliography of seven titles.

2/2

16 -

INTERNAT. AEROSPACE ABST 4-70 71 5 0000

A70-19361

GENERAL COSMOLOGICAL SOLUTION OF THE GRAVITA-TIONAL EQUATIONS WITH A SINGULARITY IN TIME.

I. M. Khalatnikov (Akademiia Nauk SSSR, Institut Teoreticheikoi Fiziki, Moscow, USSR) and E. M. Lifshits (Akademiia Nauk SSSI).

Institut Fizicheskikh Problem, Moscow, USSR).

Physical Review Letters, vol. 24, Jan. 12, 1970, p. 76-79. 12 refs.

A way is indicated to construct a general solution of the Einstein equations with a singularity, starting from a previously known solution of a lesser degree of generality. A qualitative description is given of the evolution of the metric in this general solution toward the singularity, which is of a complex, oscillatory .nature.

10411000

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310001-1"

1/2 020

UNCLASSIFIED

PROCESSING DATE--13NOV70

TITLE-OSCILLATORY APPROACH TO SINGULAR POINT IN THE OPEN COSMOLOGICAL

MODEL -U-

AUTHOR-(02)-LIFSHITZ, E.M., KHALATNIKOV, I.M.

COUNTRY OF INFO--USSR

SOURCE--JETP LETTERS (USA), VOL. 11, NO. 3, P. 200-3 (FEB. 1970)

DATE PUBLISHED --- FE3 70

SUBJECT AREAS--MATHEMATICAL SCIENCES

TOPIC TAGS--COSMOLOGY, OSCILLATION, MATHEMATIC SPACE, MATHEMATIC MODEL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/1781

STEP NO--US/0000/70/011/003/0200/0203

CIRC ACCESSION NO--AP0133686

UNCLASSIFICO

| 2/2 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNCLASSIFIED                                                                                                   | PROCESSING DATE 13NOY70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CIDC ACCECTION NOADOLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 686                                                                                                            | e i Nobel uttu Bayacemeane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| ABSTRACT/EXTRACT(U) GP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O- ABSTRACT. DISCUSSE                                                                                          | S A MODEL WITH HOMOGENEOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| SPACE OF TYPE VILL WHICH THE GENERAL COSMOLOGICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H NUL UNLY CUNCIAMS THE                                                                                        | QUALITATIVE ANALYSIS OF<br>S EQUATION BUT ALSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| PROVIDES NEW INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N ON CERTAIN ASPECTS OF                                                                                        | THE PROBLEM OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| SINGULARITY HAVING A CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MPLICATED OSCILLATORY C                                                                                        | HARACTER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| FACILITY: USSR ACAD. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CIS. The Ball of Paris                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 一人的人 计连续 脐 氯乙基铁烷                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 바람들은 경기 가능성이 그리는 이 이번 것이다.<br>사람들은 사람들은 이 사람들이 하나 이 하는 것이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j.   |
| [6일] [10] 보고 있는데 보고 있다고 있는데 그리고 있다.<br>[6일] [10] 보고 있는데 보고 있는데 보고 있는데 보고 있다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¢ 15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | and the second of the second o |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNCLASSIFIED                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| The state of the s | क्ष्यकारमा प्रमाणका है। जाने क्षिप्र के जाने क |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

USSR

UDC 530.145

KHALATNIKOV, I. M.

Teoriya Sverkhtekuchesti (Theory of Superfluidity), Moscow, "Nauka," 1971, 320 pp

Translation of Annotation, p 2: The monograph deals with the present status of the theory of superfluidity. The first chapters consider questions relating to the shape of the spectrum for elementary excitations in superfluid helium. Two-component hydrodynamic equations are then derived, and these are used to study the propagation of sound and discontinuities in a superfluid. There is a detailed exposition of the theory of kinetic phenomena in helium II. The hydrodynamics of a rotating superfluid and the theory of solutions of foreign particles in helium are also considered. The theory of a Fermi liquid and the theory of Fermi-Bose systems are closely related to the theory of superfluidity and are also included in the book. The last chapter sets forth current ideas about the motion of charged particles in liquid helium. The author of the book has made a significant contribution to the development of superfluidity theory.

1/2

USSR

KHALATNIKOV, I. M., Teoriya Sverkhtekuchesti, Moscow, "Nauka," 1971, 320 pp

The book is intended for scientific workers and engineers and can also serve as a study aid for postgraduates and students in higher courses specializing in the field of theoretical physics and solid-state physics. Fourteen illustrations. Bibliography with 59 titles.

2/2

USSR

BELINSKIY, V. A. and KHALATNIKOV, I. M., Institute of Theoretical Physics imeni L. D. Landau of the Academy of Sciences USSR

"General Solution of the Gravitational Equations With a Physical Singularity"

Moscow, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol. 57, No. 6, Dec 69, pp 2163-2175

Abstract: The authors were able to conclude on the basis of previous studies with Ye. M. Lifshits that a general solution of the gravitational equations with a physical singularity exists and to explain the qualitative character of the evolution of a metric as one approaches the singular point. A general solution of the Einstein equations is investigated that contains a simultaneous physical singularity with respect to time. A general solution is understood to mean a solution in which the physical arbitrariness is determined by four arbitrary functions of three space coordinates in a vacuum and by eight in a space with matter. The general solution considered exhibits the same type of behavior in time as in the particular case of a metric with a three-parameter group of motions of the ninth Bianchi type.

1/1

ATO0377773

NUCLEAR SCI. ABST./-70 AU0000

1360 THEORY OF BOSE-FERMI QUANTUM LIQUIDS,
Khaletnikov, I. M., (Inst. for Theoretical Physics, Moscow),
pp 71-86 of Contemporary Physics: Trieste Symposium 1968.
Vol. I. Vienna, International Atomic Energy Agency, 1969.
From International Symposium on Contemporary Physics,
Trieste, Ifaly, See STI/PUB-214(Vol.1); CONF-630629(Vol.1).

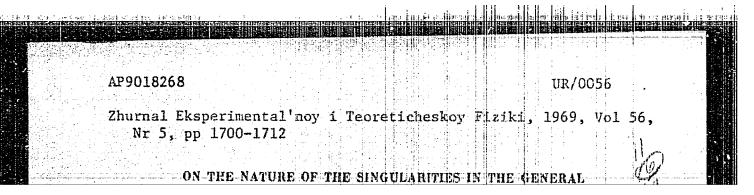
A phenomenological theory of a mixture of Fermi and Bose
liquids is presented here, similarly to Landau's procedure for
Fermi liquids. A definition is given for the Fermi excitation energy in a superfluid liquid. An exact set of equations has been
obtained which describes the properties of a Fermi - Bose liquid;
the solutions in the acoustic range are discussed. (auth)

2 day

19730766

PRIMARY SOURCE: Zhurnal Eksperimentæknoy i Teoreticheskoy, 75
Fiziki, 1969, Vol 57, Nr 6(12), pp. 3/3-2/75

GENERAL SOLUTION OF THE GRAVITATIONAL EQUATIONS
WITH A PHYSICAL SINGULARITY


V. A. Belinski, I. M. Khulatnikan.

An attempt is made to set up a general solution of the Einstein equations with a physical singularity with respect to time. The general solution possesses the same type of behavior in time as in the case of a metric with a three-parameter motion group of the ninth Bianki type.

SOLUTIONS OF THE GRAVITATIONAL EQUATIONS

# V. A. Belinsky, J. M. Khalulaika?

A general solution of the gravitational equations which sontaized a fictitious singularity was investigated in ref [4]. A solution with a physical singularity was found which was deficient with respect to an arbitrary function which would make it a general solution. In the present paper it is investigated in which way inclusion of the deficient function as a perturbation may, during evolution of the solution with a physical singularity, destroy it and yield a fictitious singularity.



1/2 007

UNCLASSIFIED

PROCESSING DATE-300CT70

TITLE—GEOLOGICAL FACTORS AFFECTING THE NATURE OF GAS AND OIL DEPOSITS OF THE NORTHERN PART OF THE BAKU ARCHIPELAGO —U—

AUTHOR-(02)-POLOUDIN, G.A., KHALAFLI, E.B.

COUNTRY OF INFO--USSR

SOURCE--AZERB. NEFT. KHOZ. 1970, 121, 3-5

DATE PUBLISHED ---- 70

SUBJECT AREAS-EARTH SCIENCES AND OCEANOGRAPHY, MATERIALS

TOPIC TAGS-PETROLEUM GEOLOGY, PETROLEUM DEPOSIT, NATURAL GAS, PETROLEUM PROPERTY

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/0140

STEP NO--UR/0487/70/000/002/0003/0005

CIRC ACCESSION NO--APO129396

\_\_\_\_UNCLASSIFIED

2/2 007 UNCLASSIFIED PROCESSING DATE--300CT70
CIRC ACCESSION NO--APO129396
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. SOME PHYS. AND CHEM. PROPERTIES OF
CRUDE OIL AND NATURAL GAS ARE GIVEN. THE MAIN GEOL. FACTORS AFFECTING
GAS OIL DISTRIBUTION IN THE TECTONIC ZONE OF SANGACHALY SEA LAKE BULLA
ARE THE LITHCL. OF THE ENCLOSING AND OVERLYING ROCKS, BUT MOSTLY THE
HUDDY VOLCANISM AND ASSOCD. TECTONIC FRACTURES AND FAULTS.

UNCLASSIFIED

UNCLASSIFIED

USSR

UDC: 629.7.036.3:533.697.4.001.4



SHCHUKIN, V. K., POLIKARPOV, P. A., FILIN, V. A., KHALATOV, A. A., YAKSHIN. A. P.

"Influence of Entry Conditions on Heat Exchange in Nozzles"

Tr. Kaz. Aviats. In-ta [Works of Kazakh Aviation Institute], 1972, No 151, pp 3-10 (Translated from Referativnyy Zhurnal Aviatsionnyye i Raketnyye Dvigateli, No 5, 1973, Abstract No 5.34.59).

Translation: A description is presented of an experimental installation for the study of unstable convective heat exchange in nozzles. Results are presented from an experimental study of the local heat transfer in a nozzle when a heat insulated pipe with a diameter equal to the input diameter of the nozzle and a relative length 1/d=1, 2, 5, 10 or 15 is connected to its input, or when a cylindrical sleeve is placed at the output of the nozzle with various central aperture diameters. 3 figures, 10 biblio. refs.

1/1

- 33

1/2 022 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--GRADIENT METHOD FOR INVESTIGATING HEAT TRANSFER IN CHANNELS OF

VARIABLE CROSS SECTION -U-

AUTHOR-(02)-KHALATOV, A.A., SHCHUKIN, V.K.

COUNTRY OF INFO--USSR

SOURCE--AVIATSIONNAIA TEKHNIKA, IZV. VUZ VOL. 13, NO. 4, 1969, 121-128

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--HEAT TRANSFER COEFFICIENT, HEAT TRANSFER THEORY

CONTROL MARKING--NO RESTRICTIONS

PROXY FEEL/FRAME--1979/1605

STEP NO--UR/0147/69/012/004/0121/0128

CIRC ACCESSION NO--APO047927

UNCLASSIFIED ---

THE CASE AROUND A CHORD TO THE CASE OF THE

# 

| ON        | TERMI<br>THE | NING<br>BASI | LOCAL<br>S OF T | HEAT   | PHOH ABSTRACT. DEVELOPMENT TRANSFER COEFFICIENTS UND PROPERTURE DESTRIBUTION MEANS SECTION OF THE WALL, WITH |       |                | UND!                                  | DER STATIONARY CONDITIONS ASURED AT THE CONTOUR OF |               |                  |                   |                           |   |
|-----------|--------------|--------------|-----------------|--------|--------------------------------------------------------------------------------------------------------------|-------|----------------|---------------------------------------|----------------------------------------------------|---------------|------------------|-------------------|---------------------------|---|
| DE1<br>OF | TERM I       | NAT I        | ON OF<br>ERATUR | THE TE | MPERAT                                                                                                       | URE G | RADIE<br>HOD I | NTS F                                 | ROM A                                              | A NUM<br>DEXP | ERICAL<br>ERIMEN | . COMPU<br>ITALLY | TATION<br>FOR A<br>PARTS. |   |
| LH        | MANEL        | . can:       | 2121IV          | ·      | nu cri                                                                                                       | INUKI | CHLI           | A SPE                                 | ILR IU                                             | нцу А         | HU A C           | UNICAL            | 1 MN 1 3 4                |   |
|           |              | •            | •               |        |                                                                                                              |       |                | :                                     |                                                    |               |                  |                   |                           |   |
|           |              |              |                 |        |                                                                                                              |       |                | · · · · · · · · · · · · · · · · · · · |                                                    |               |                  |                   |                           |   |
|           |              |              |                 |        |                                                                                                              |       |                |                                       |                                                    |               | •                |                   |                           |   |
|           |              |              |                 |        |                                                                                                              |       |                |                                       | •                                                  |               |                  |                   |                           |   |
|           |              |              |                 |        |                                                                                                              |       |                |                                       |                                                    | · .           |                  |                   |                           |   |
|           |              |              |                 |        |                                                                                                              |       |                |                                       |                                                    |               |                  |                   |                           |   |
| •         |              |              |                 |        |                                                                                                              |       |                |                                       |                                                    |               | :                |                   |                           |   |
|           |              |              |                 |        |                                                                                                              |       |                |                                       | *                                                  |               |                  |                   |                           | ! |
|           | •            |              |                 |        |                                                                                                              |       |                | ; ,                                   |                                                    |               |                  |                   |                           |   |
|           |              |              |                 |        |                                                                                                              |       |                |                                       |                                                    |               |                  |                   |                           |   |

USSR

UDC 616.281-008.35+615.216.85-071

IAPAYEV, E. V., Candidate of Medical Sciences, UDALOV, YU. F., Doctor of Medical Sciences, and KHALATOV. O. P.

"The Pharmacological Effect of Pyridoxine and Its Combination With Adenosine Triphosphoric Acid on the Functional State of the Vestibular Analysor"

Kiev, Zhurnal Ushnykh, Nosovykh, i Gorlovykh Bolezney, No 5, Sep/Oct 71, pp 15-19

AbstractL An evaluation was made by the cupulometric method of the effect of pyridoxine and its combination with an equal amount of adenosine triphosphoric acid on the dynamics of the illusion of counterrotation and of the duration, frequency, and amplitude of postrotatory nystagmus. Test results demonstrated that whereas pyridoxine had a positive effect on the functional state of the vestibular analysor in the case of an initial deficit of this vitamin in the body, its combination with adenosine triphosphoric acid was effective with a satisfactory supply of the substance present prior to the test. The preparation may be recommended as an effective means of preventing or reducing any marked illusory sensations of vestibular origin, an important factor in modern aviation, by lowering the reactivity of the vestibular analysor to the effect of stimulants while increasing vestibular stability.

- 65 -

MEDICINE Aerospace Medicine

USSR

UDC 613.2.577.164.137.613.693

Hambar Hambard Color of the particular of the pa

UDALOV, YU. F., and KHALATOV, O. P., Moscow

"Pyridoxine Metabolism and Supply in Flight Crew Members"

Moscow, Voprosy Pitaniya, No 3, May/Jun 1971, pp 12-18

Abstract: Nitrogen, amino acid, and vitamin metabolisms are among the most sensitive metabolic changes produced by stress on the nervous-emotional system as a result of various physical factors encountered in airplane flights. The metabolism of pyridoxine was studied in 252 pilots, 63 of whom flew training missions in IL-14 transport planes (it has been found that personnel in flight training are under particular nervous-emotional stress, and that daytime flights at low altitudes are characterized by the effect of atmospheric turbulence on the crews. During the entire study period, the test subjects were restricted to a normal diet with a dialy intake of 4,1110 calories, including 1'2 g protein, 154 g fat and 649 g carbohydrates. The daily ration included also: 2 mg vitamin A, 4.2 mg thiamine, 3.8 mg riboflavine, 33 mg nicotinic acid, 75 mg ascorbic acid, and 2.4 mg pyridoxine. A group of 40 nonfliers (ground crew personnel) and 40 sailors (on a cruise) served as controls. The pyridoxine, 4-pyridoxic acid, and oxalate contents in the urine were determined. The 1/2

USSR

UDALOV, YU. F., and KHALATOV, O. P., Voprosy Pitaniya, No 3, May/Jun 71, pp 12-18

blood pyridoxine level and the serum aspartateaminotrasferase and alanineaminotransferase were determined. Considerable changes in pyridoxine metabolism were found: there was a significant increase of the vitamin in the blood and in the urine after 4-6 hr flights. The pyridoxine requirement on flight and non-flight days changed very little. This fact was attributed to the used of pyridoxine from the tissue reserves. The authors consider it probable that pyridoxine is not only used up but redistributed and included in the enzyme systems of other organs so that the excretion of 4-pyridoxic acid decreased only slightly during a flight and its daily excretion remained unchanged. The aminotransferase activity of the blood was increased 10-28%; this is considerably less of an increase than that of the pyridoxine level in the blood. When pilots acted as passengers (on IL-18 planes) no increase in the vitamin B, concentration in their blood was found after the flight. This was interpreted as an indication of the importance of nervous and emotional stress in connection with the changes in the pyridoxine metabolism of pilots. The authors conclude that the content of pyridoxine in the daily rations of flight crews must be carefully watched since a lack of the vitamin might give rise to a decrease in vestibular stability. 2/2

- 36 -

UDC: 539.4

USSR

SHORR, B. F., LOKSHTANOV, Ye. A., KHALATOV, Yu. M., Moscow

"One Possible Approach to Probabilistic Evaluation of the Vibration Strength of Turbine Parts"

Kiev, Problemy Prochnosti, No 11, Nov 72, pp 11-14.

Abstract: A probabilistic estimate is calculated of the vibration strength of turbine machines by means of the strength reserve calculated from the statistical extreme values of applied and rupture variable stresses, based on measurement of mean values and dispersions considering the volume of the experimental data available. The qualitative difference of the application of strength reserves using statistically maximum stresses in place of the maximum measured stresses consists first of all in the utilization not only of the maximally stressed parts, but of all parts for which tensometry is performed, and in the possibility of equally reliably estimating the strength reserves by measurement of stresses on various numbers of parts, as well as estimation of the strength reserve on the basis of the statistically maximum stresses, stimulating an increase in the volume of experimental information on the stress of blades for determination of vibration strength.

1/1

- 135 -

USSR

UDC 547.558.1

SHEVCHUK, M. I., KHALATURNIK, M. V., and DOMBROVSKIY, A. V., Chernovtsi State University

"Mechanism of the Formation of Phosphonium Salts.  $\alpha$ -Alkyl- $\beta$ ,  $\gamma$ -diketo-phosphonium Slats and Phosphoranes"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 4, Apr 73, pp 758-763

Abstract: It has been established that  $\alpha$ -bromoketones reacted with triphenyl-phosphine form initially an enolphosphonium salt and an ionic pair, eventually converting to the stable quaternary phosphonium salt. The formation of  $\beta$ ,  $\gamma$ -diketophosphonium salt from bromoalkylaryl- $\alpha$ -diketones and triphenylphosphine goes through only one intermediate stage — through the ionic pair. With triphenylphosphine, bromoalkylaryl- $\alpha$ -diketones — Ar-CO-CO-CH(Br)-R (R= CH3, C<sub>2</sub>H<sub>5</sub>, C<sub>3</sub>H<sub>7</sub>) — form  $\alpha$ -substituted  $\beta$ ,  $\gamma$ -diketophosphonium bromides which upon treatment with aqueous solution of sodium carbonate convert easily to the respective  $\beta$ ,  $\gamma$ -diketo- $\gamma$ -alkyltriphenylphosphorames. The latter reacting via the Wittig reaction yield unsaturated polyoxo compounds.

1/1

USSR

UDC 547.341

SHEVCHUK, M. I., KHALATURNIK, M. V., and DOMBROVSKIY, A. V., Chernovtsi State University

"IR Spectra and Chemical Structure of Aroylcarbomethylenetriphenylphosphoranes and Aroylcarbomethyltriphenylphosphonium Bromides"

Leningrad, Zhurnal Obshchey Khimii, Vol 42 (104), No 12, Dec 72, pp 2630-2634

Abstract: Investigation of the IR spectra of methyl aryl  $\alpha$ -diketones, aroylcarbomethylenetriphenylphosphoranes, aroylcarbomethyltriphenylphosphoranes and aroylcarbomethyl-  $\beta$ -oximetriphenylphosphoranes and aroylcarbomethyl-  $\beta$ -oximetriphenylphosphonium bromides showed that the  $\beta$ -carbonyl groups of the aroylcarbomethylenetriphenylphosphoranes are conjugated with the P:C double bond. The  $\beta$ -carbonyl group on the other hand is not conjugated with P:C and therefore participates in reactions characteristic of the carbonyl group. The  $\beta$ -carbonyl group of aroylcarbomethylene-  $\beta$ -oximetriphenylphosphoranes, in spite of the conjugation with the P:C bond, forms hydrogen bonds with the hydroxyl group hydrogen of the  $\beta$ -oxime function. This ability is retained even upon transition from  $\beta$ -oximephosphoranes to their hydrobromides (phosphonium salts).

1/1